

OVERVIEW OF GENE EXPRESSION-BASED TESTS IN EARLY BREAST CANCER

Aleix Prat, MD PhD

Medical Oncology Department Hospital Clínic of Barcelona University of Barcelona

Disclosures

Advisory role for Nanostring Technologies

>5 years (8.7)

Breast Cancer Gene Expression Profiling Tests Include:

- 1. The PAM50 Intrinsic Subtypes: LumA, LumB, Basal-like, HER2-enriched (Wallden BMC 2015)
- 2. The PAM50 Risk of Recurrence (ROR) (Wallden BMC 2015)
- 3. OncotypeDX Recurrence Score (Paik et al., NEJM, 2004)
- 4. Mammaprint (van de Vijver et al., NEJM, 2002)
- 5. EndoPredict (Filipits et al., CCR 2011)
- 6. Breast Cancer Index: 2-gene ratio plus 5-gene proliferation (Ma et al., CCR 2008)
- 7. Genomic Grade Index (Sotiriou et al. JNCI 2006)

Clinical Implementation of Drugs

DRUG

Phase I

Phase II

Phase III

BIOMARKER

Analytical Validation

Clinical Validation

Clinical Utility

READY FOR PRIME TIME

Clinical Implementation of Biomarkers

BIOMARKER

Analytical

- Accuracy and Precision in measurement of analyte.
- Validation Robustness.

Clinical Validation

- Correlation of score/classifier with clinical state or outcome.
 - e.g. biomarker identifies 2 prognostic groups.

Clinical Utility 2

- Actionable (could affect treatment).
- Use results for patient benefit.

Evaluation of Prognostic and Predictive Biomarkers. Levels of Evidence

Level	Characteristics	Use?
l	 Prospective Clinical Trial (PCT) designed to test marker Consistent results from > 2 PCTs not designed to test marker, but biomarker is tested in preplanned manner on both trials 	Yes
II	 1 PCT not designed for marker; biomarker analyses preplanned > 2 consistent results from Prospective Observational Cohorts (POC); preplanned analyses 	Usually no
III	1 analysis POC; biomarker preplanned analyses	No
IV-V	 Unplanned biomarker analyses Retrospectively ascertained cohorts 	No

Richard M. Simon, Soonmyung Paik, Daniel F. Hayes, JNCI 2009

Are they analytically validated?

YES

Clinical Chemistry 53:6 1084-1091 (2007)

Cancer Diagnostics

Analytical Validation of the Oncotype DX
Genomic Diagnostic Test for Recurrence
Prognosis and Therapeutic Response Prediction
in Node-Negative, Estrogen Receptor-Positive
Breast Cancer

Maureen Cronin, Chithra Sangli, Mei-Lan Liu, Mylan Pho, Debjani Dutta, Anhthu Nguyen, Jennie Jeong, Jenny Wu, Kim Clark Langone, and Drew Watson

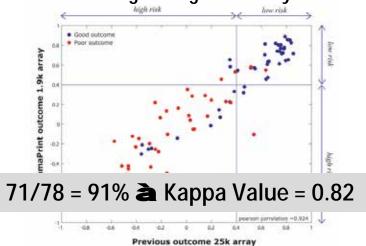
> Table 6. SD of the normalized expression measurement for the Oncotype DX assay, representing cumulative sources of process imprecision shown for each gene and the RS.

or process improvision shown for	caen gene and the ite.		
Official gene symbol	SD, reference normalized C _T		
ACTB	0.01		
BAG1	0.03		
BCL2	0.09		
CCNB1	0.09		
CD68	0.10		
SCUBE2	0.11		
CTSL2	0.11		
ESR1	0.05		
GAPDH	0.25		
GRB7	0.22		
GSTM1	0.04		
GUSB	0.03		
ERBB2	0.07		
MKI67	0.06		
MYBL2	0.30		
PGR	0.08		
RPLPO	0.05		
AURKA	0.10		
MMP11	0.02		
BIRC5	0.05		
TFRC	0.04		
RS	1.53		

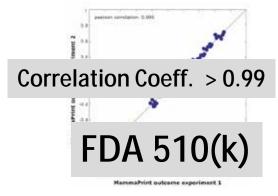
RS (0-100) SD < 2.0 units

BMC Genomics

Methodology article


MammaPrint

Open Access

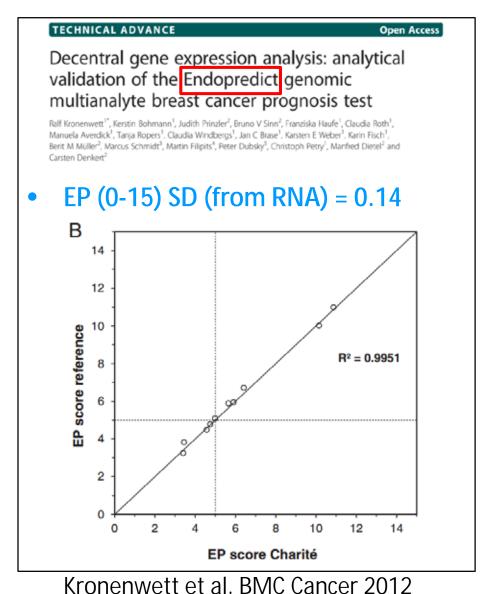

Converting a breast cancer microarray signature into a high-throughput diagnostic test

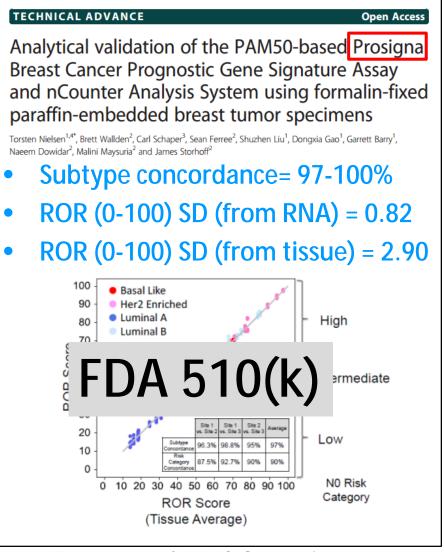
Annuska M Glas*¹, Arno Floore¹, Leonie JMJ Delahaye¹, Anke T Witteveen¹, Rob CF Pover¹, Niels Bakx¹, Jaana ST Lahti-Domenici¹, Tako J Bruinsma¹, Marc O Warmoes¹, René Bernards¹, Lodewyk FA Wessels² and Laura J Van 't Veer¹

Customized mini-array reproducibility vs. original Agilent Arrays

Customized mini-array reproducibility

MAMMAPRINT FFPE Assay FDA 510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION


FF vs FFPE


Table 14 Second Validation Dataset – Agreement Analysis

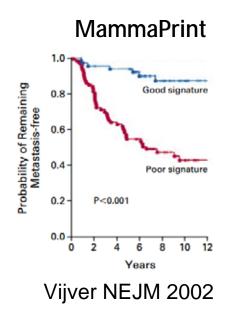
	Second Validation Dataset (n=345)				
	Point Estimate	N	95% CI		
PPA	86.6%	136/157	80.4% - 91.1%		
NPA	91.5%	172/188	86.7% - 94.7%		
Overall Concordance	89.3%	308/345	85.4% - 92.2%		

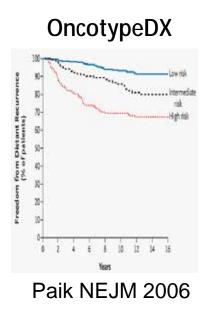
PPA: positive percent agreement NPA: negative percent agreement

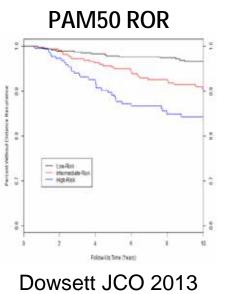
Analytical Validation of Decentralized Gene Expression-based tests (EndoPredict and PROSIGNA)

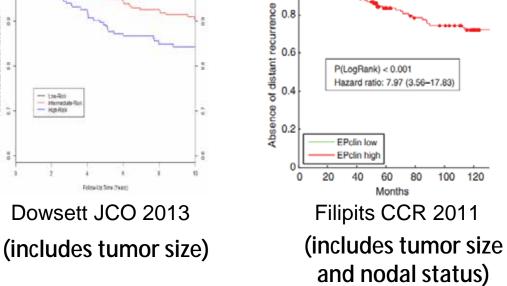
Torsten et al. BMC Genomics 2014

Can these tests help us identify patients who do not need adjuvant chemotherapy because of their low risk of relapsing?

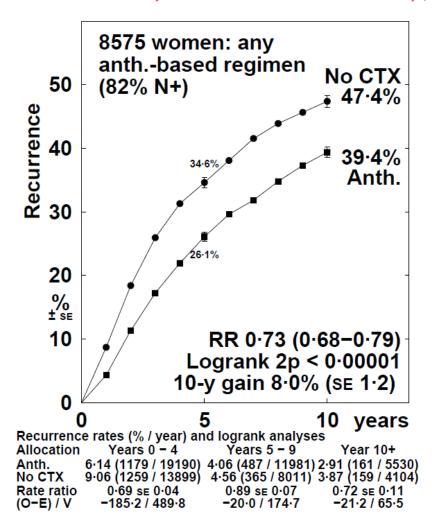



YES


Predicting Baseline Prognosis


Identification of patients with HR+/HER2-negative disease (T1-2/0-3 N+):

Who can be spared adjuvant multi-agent chemotherapy due to their low risk (<10%) of distant recurrence at 10-years with endocrine therapy-only.



EndoPredict

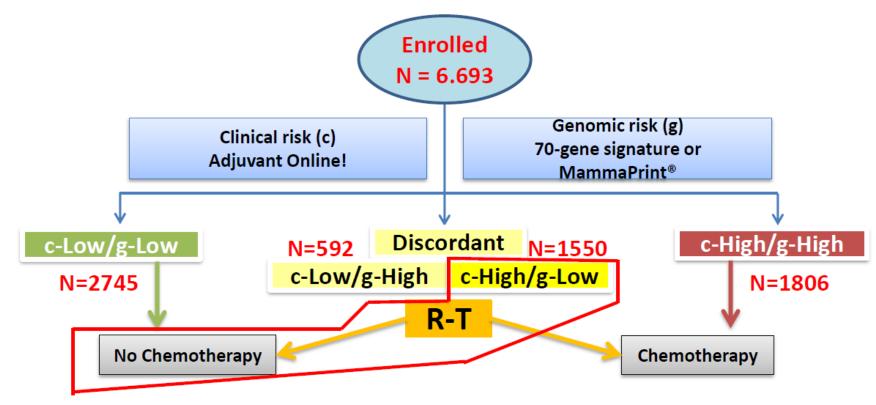
Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials

Early Breast Cancer Trialists' Collaborative Group (EBCTCG)

- 1/3 breast cancer mortality reduction
- Depend on absolute risks without chemotherapy.
- Proportional risk reductions were little affected by age, nodal status, tumor size, estrogen receptor status, or tamoxifen use.
- However, gene expression-based tests were not evaluated.

10-year Absolute Risk without chemo	10-year Absolute Benefit from chemo	10-year Risk with chemo
10%	3%	7%
20%	6%	14%
30%	9%	21%

Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline


Lyndsay N. Harris, Nofisat Ismaila, Lisa M. McShane, Fabrice Andre, Deborah E. Collyar, Ana M. Gonzalez-Angulo, Elizabeth H. Hammond, Nicole M. Kuderer, Minetta C. Liu, Robert G. Mennel, Catherine Van Poznak, Robert C. Bast, and Daniel F. Hayes

HR+/HER2-neg and NODE-negative

	INDICATION	Evidence Quality	Recommendation Strenght	
OncotypeDX	YES	HIGH	STRONG	New data!
PAM50 ROR	YES	HIGH	STRONG	
EndoPredict	YES	INTERMEDIATE	MODERATE	TransATAC
MammaPrint	NO	INTERMEDIATE	MODERATE	MINDACT

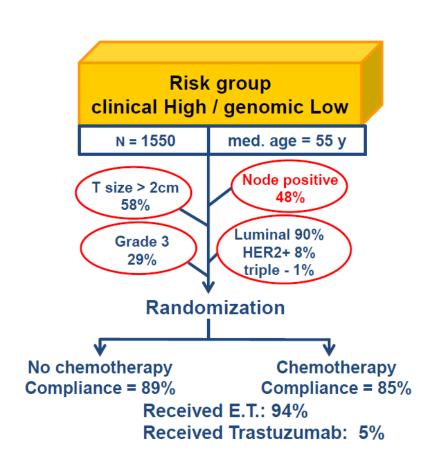
MINDACT

The primary analysis population

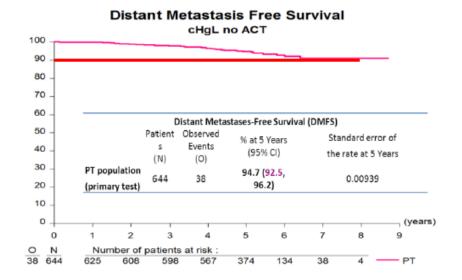
N = 644

Primary endpoint: Distant metastasis free survival (DMFS) at 5 years

Null hypothesis: 5-year DMFS rate in PT population = 92%


ha: 2.5% (1-sided)

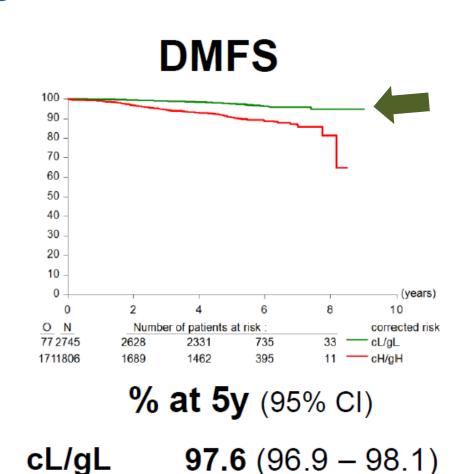
Power: 80% when true 5-year DMFS rate=95%


MINDACT – Clinical Risk Definition

ER status	HER2 status	Grade	Nodal status	Tumor Size	Clinical Risk in Mindact
			N-	≤ 3 cm	C-low
		well differentiated	IV-	3.1-5 cm	C-high
		well differentiated	1-3 positive nodes	≤ 2 cm	C-low
	<u>v</u>			2.1-5 cm	C-high
	HER2 negative		N	≤ 2 cm	C-low
	72 nc	moderately differentiated	N-	2.1-5 cm	C-high
o)	HE		1-3 positive nodes	Any size	C-high
ER positive		poorly differentiated or undifferentiated	N-	≤ 1 cm	C-low
od ~				1.1-5 cm	C-high
			1-3 positive nodes	Any size	C-high
		well differentiated OR	N-	≤ 2 cm	C-low
	\ e			2.1-5 cm	C-high
ositi	ositi	moderately differentiated	1-3 positive nodes	Any size	C-high
	HER2 positive			≤ 1 cm	C-low
	Ë	poorly differentiated or undifferentiated	N-	1.1-5 cm	C-high
		unumerentiateu	1-3 positive nodes	Any size	C-high

Clinical outcome of the MINDACT population at 5y median follow-up B) DISCORDANT RISK GROUPS: PRIMARY TEST




The primary statistical test (DMFS at 5Y)

Null Hypothesis: set at 92% Observed 5Y DMFS = 94.7% 95% CI ≈ 92.5 – 96.2%

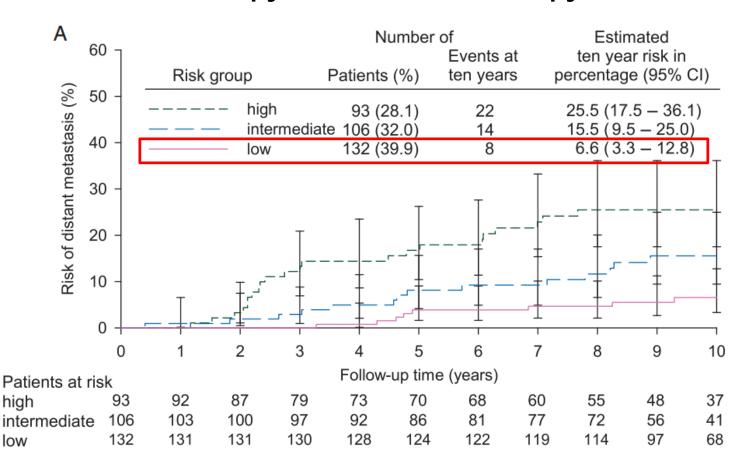
MINDACT clinical low risk / genomic low risk

Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

Lyndsay N. Harris, Nofisat Ismaila, Lisa M. McShane, Fabrice Andre, Deborah E. Collyar, Ana M. Gonzalez-Angulo, Elizabeth H. Hammond, Nicole M. Kuderer, Minetta C. Liu, Robert G. Mennel, Catherine Van Poznak, Robert C. Bast, and Daniel F. Hayes

HR+/HER2-neg and NODE-negative

	INDICATION	Evidence Quality	Recommendation Strenght	
OncotypeDX	YES	HIGH	STRONG	
PAM50 ROR	YES	HIGH	STRONG	
EndoPredict	YES	INTERMEDIATE	MODERATE	
MammaPrint	NO	INTERMEDIATE	MODERATE	



HR+/HER2-neg and NODE-positive

	INDICATION	Evidence Quality	Recommendation Strenght
OncotypeDX	NO	INTERMEDIATE	MODERATE
PAM50 ROR	NO	INTERMEDIATE	MODERATE
EndoPredict	NO	INSUFFICIENT	MODERATE
MammaPrint	NO	INTERMEDIATE	MODERATE

PROSIGNA within HR+/HER2-neg and 1 positive node

- TransATAC + ABCSG08 combined analysis
- N=331 1N+ and 212 2-3N+
- 5-years of endocrine therapy and no chemotherapy

Should we use Ki67 IHC to identify low risk outcome patients who do not need adjuvant chemotherapy?

NO

Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

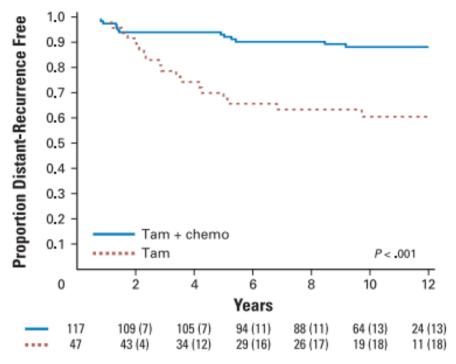
Lyndsay N. Harris, Nofisat Ismaila, Lisa M. McShane, Fabrice Andre, Deborah E. Collyar, Ana M. Gonzalez-Angulo, Elizabeth H. Hammond, Nicole M. Kuderer, Minetta C. Liu, Robert G. Mennel, Catherine Van Poznak, Robert C. Bast, and Daniel F. Hayes

Guide choice on adjuvant chemotherapy

	INDICATION	Evidence Quality	Recommendation Strenght
Ki67 IHC	NO	INTERMEDIATE	MODERATE
IHC4	NO	INTERMEDIATE	MODERATE

IHC for Ki-67 analysis <u>lacks reproducibility across laboratories</u> and, therefore, cannot be consistently interpreted when performed in a broad range of laboratories.

Can these tests help us determine the benefit of adjuvant chemotherapy?

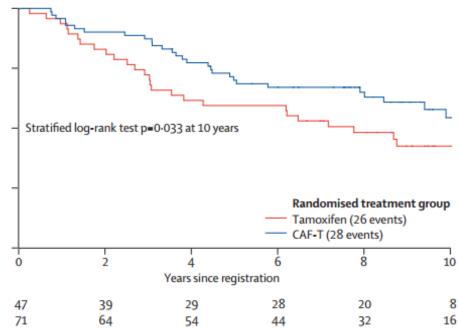

Maybe

NSABP-B20 subanalysis

Paik et al. JCO 2006

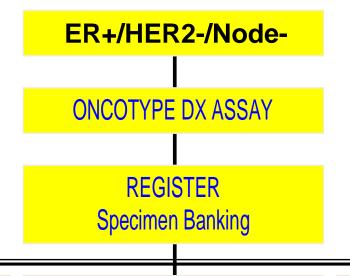
OncotypeDX RS HIGH RISK

N=651; ER+/NODE-negative


NSABP-B20 data are confounded by the dataset originally used to generate the assay.

SWOG8814 subanalysis

Albain et al. Lancet Oncol 2010


OncotypeDX RS HIGH RISK

N=367; ER+/NODE+

SWOG8814 data is hypothesis generating: small sample set and no additional prediction beyond 5 years.

Accrual completed on Oct 25th 2010 Target: 10,000

TAILORx Study Design

ECOG/Inter-group PI: J. A. Sparano

Secondary Study Group 1

RS < 11

~29% of Population

Primary Study Group RS 11-25 ~44% of Population Secondary Study Group 2 RS > 25 ~27% of Population

Primary Objective:

- Non-inferiority study within the intermediate group
- Null hypothesis: no treatment diferences
- No chemotherapy arm (>87% 5-year DFS)
- Chemotherapy arm (90% 5-year DFS).
- Type 1 error: 10%; Type 2 error: 5%
- 95% power

5-year 99.1 69% <1.9

Sparanc

SWOG RxPONDER Trial (S1007): Patient Information

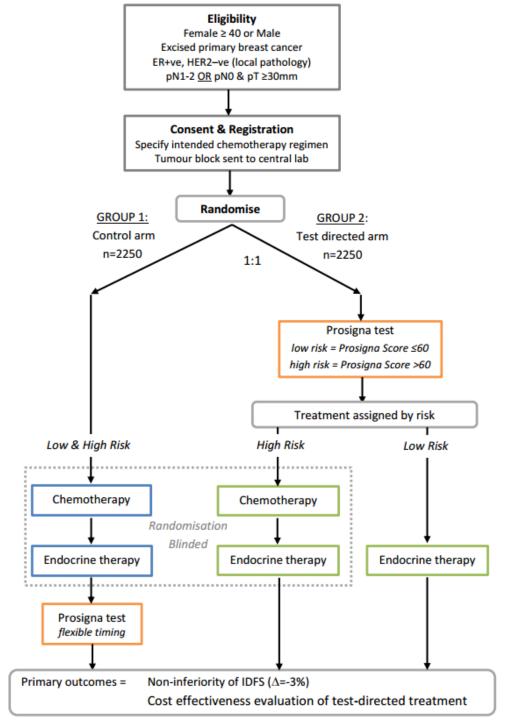
Taking part in RxPONDER

Thank you for your interest in the RxPONDER (riz-POND-er) clinical trial

A Phase III, Randomized Clinical Trial of Standard Adjuvant Endocrine Therapy +/Chemotherapy in Patients with 1-3 Positive Nodes, HR+/HER2-negative and
HER2-Negative Breast Cancer With Recurrence Score (RS) of 25 or Less.
ClinicalTrials.gov Identifier: NCT01272037
Opened 2011, Estimated Accrual = 4000

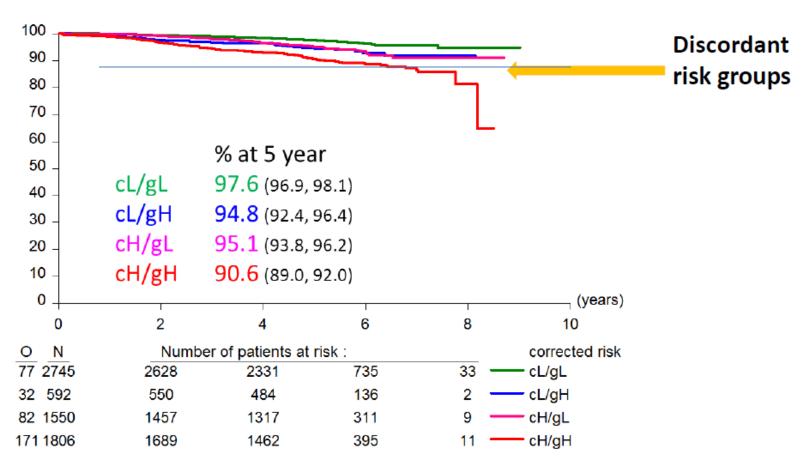
N1, ER/PR+, HER2– breast cancer

Oncotype DX already


Primary Objective:

- To find a significant interaction between Recurrence Score (as a continuous variable) and treatment
- DFS
- Type 1 error: 5%; 80% power

Hormonal therapy alone N=2000 Chemotherapy plus hormonal therapy N=2000



- N=4,500
- HR+/HER2-negative
- pN1-2 or pT ≥3 cm
- Non-inferiority (delta 3%, 85% power)
 - 5-year DFS 82% without chemotherapy
- PROSIGNA will be used (cutpoint 60)
 - High risk
 - Low/Intermediate risk

Clinical outcome of the MINDACT population at 5y median follow-up DMFS IN ALL 4 RISK GROUPS

Distant Metastasis Free Survival

MINDACT – secondary endpoints

Efficacy: CT vs no CT in discordant risk group c-Low/g-High per protocol analysis

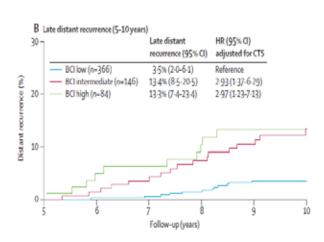
c-Low/g-High CT vs no CT per protocol population						
	Treatment received	Patients	Observed Events	% at 5 Year(s) (95% CI)	Hazard Ratio (adjusted Cox model) (95% CI)	p-value (adjusted logrank)
DMES	СТ	224	11	96.1 (92.4, 98.1)	0.90 (0.40,2.01)	0.798
DMFS	no CT	254	14	93.9 (89.6, 96.5)	1.00	0.738
DFS	СТ	224	17	92.7 (87.9, 95.7)	0.74 (0.40,1.39)	0.255
DF3	no CT	254	25	90.5 (85.7, 93.8)	1.00	0.355
os	СТ	224	5	98.1 (94.9, 99.3)	0.72 (0.23,2.24)	0.572
03	no CT	254	8	97.0 (93.8, 98.6)	1.00	0.572

MINDACT – secondary endpoints

Efficacy: CT vs no CT in discordant risk group c-High/g-Low per protocol analysis

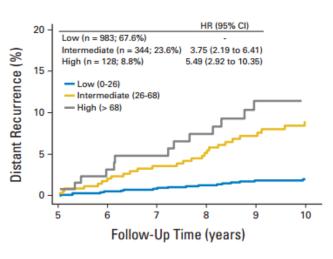
	c-High/g-Low CT vs no CT per protocol population					
	Treatment received	Patients	Observed Events	% at 5 Year(s) (95% CI)	Hazard Ratio (adjusted Cox model) (95% CI)	p-value (adjusted logrank)
DMFS	СТ	592	22	96.7 (94.7, 98.0)	0.65 (0.38,1.10)	0.106
DIVIFS	no CT	636 37 94.8 (92.6, 9	94.8 (92.6, 96.3)	1.00	0.106	
DFS	СТ	592	39	93.3 (90.7, 95.2)	0.64 (0.43,0.95)	0.026
DES	no CT	636	66	90.3 (87.6, 92.4)	1.00	0.026
os	СТ	592	10	98.8 (97.4, 99.5)	0.63 (0.29,1.37)	0.245
03	no CT	636	18	97.3 (95.6, 98.4)	1.00	0.245

Can these tests identify patients that may be spared extended endocrine therapy?


Maybe

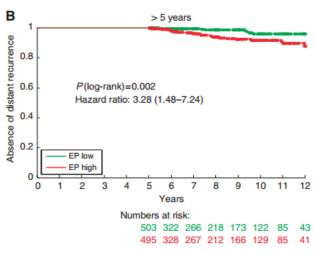
Predicting Late Recurrence

To identify a group of patients with HR+/HER2-negative disease (T1-2/0-3 N+):


• That may be spared extended endocrine therapy (5-10 years) due to their low risk of recurrence

BC Index

Sgroi Lancet Oncol 2013


PAM50 ROR

Sestak JCO 2015

(includes tumor size)

EndoPredict

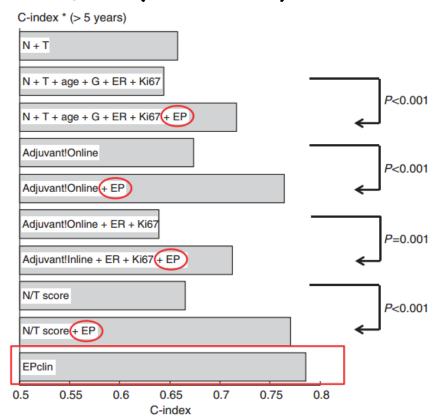
Dubsky BJC 2013

(includes tumor size and nodal status)

Factors Predicting Late Recurrence for Estrogen Receptor-Positive Breast Cancer

Ivana Sestak, Mitch Dowsett, Lila Zabaglo, Elena Lopez-Knowles, Sean Ferree, J. Wayne Cowens, Jack Cuzick

Table 3. Likelihood (χ^2) for distant recurrence for all scores according to subgroup*


	0 to 5	5 years	5 to 10 years						
	Univariate	Multivariable	Univariate	Multivariable					
Scores	χ ^{2 (P)} χ ^{2 (P)}		χ ^{2 (P)}	χ ^{2 (P)}					
	Н	HER2-negative/node-negative (n = 615)							
CTS	14.06 (<.001)	_	20.12 (<.001)	_					
IHC4	19.23 (<.001)	12.06 (<.001)	9.97 (.002)	3.89 (.05)					
RS	13.52 (<.001)	6.84 (.008)	7.99 (.005)	2.23 (.1)					
ROR	19.65 (<.001)	8.61 (.008)	28.73 (<.001)	13.85 (<.001)					

• The ROR score was the strongest molecular prognostic factor in the late follow-up period, whereas IHC4 and OncotypeDX RS were only weakly prognostic in this period.

The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients

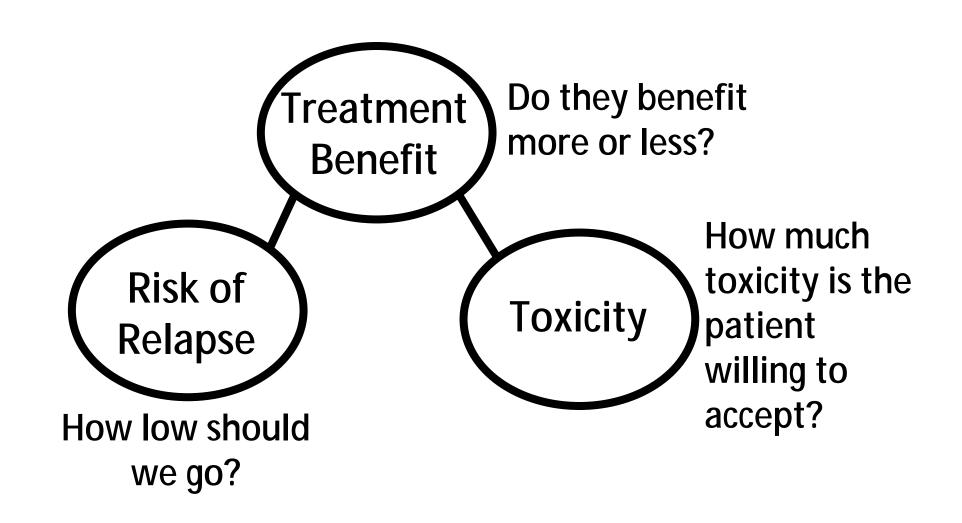
P Dubsky^{*,1}, J C Brase², R Jakesz¹, M Rudas³, C F Singer⁴, R Greil⁵, O Dietze⁶, I Luisser⁷, E Klug⁸, R Sedivy⁹, M Bachner¹⁰, D Mayr¹¹, M Schmidt¹², M C Gehrmann¹³, C Petry², K E Weber², K Fisch², R Kronenwett², M Gnant¹ and M Filipits¹⁴ on behalf of the Austrian Breast and Colorectal Cancer Study Group (ABCSG)

N=1,702 (ABCSG6/8)

Table 1. Multivariate Cox proportional hazard models for estimating the contribution of variables to predict distant recurrence in the time interval 0–5 years and after 5 years (1702 ER + /HER2 – tumours, ABCSG6/8)

Variable	0–5 years unit HR (95% CI)	<i>P</i> -value	> 5 years unit HR (95% CI)	<i>P</i> -value
EP	1.20 (1.10–1.31)	< 0.001	1.28 (1.10–1.48)	0.001
Age	1.03 (1.00–1.06)	0.032	0.97 (0.93–1.02)	0.264
Nodal status	2.15 (1.67–2.77)	< 0.001	2.45 (1.58–3.81)	< 0.001
Tumour size	1.26 (0.94–1.70)	0.121	1.11 (0.67–1.86)	0.679
Ki67	1.01 (0.99–1.03)	0.171	1.01 (0.97–1.05)	0.761
Grade	1.21 (0.77–1.90)	0.414	0.64 (0.32–1.28)	0.210
Treatment arm	0.95 (0.61–1.48)	0.807	0.91 (0.40–2.09)	0.827
Grade Treatment	1.21 (0.77–1.90)	0.414	0.64 (0.32–1.28)	0.210

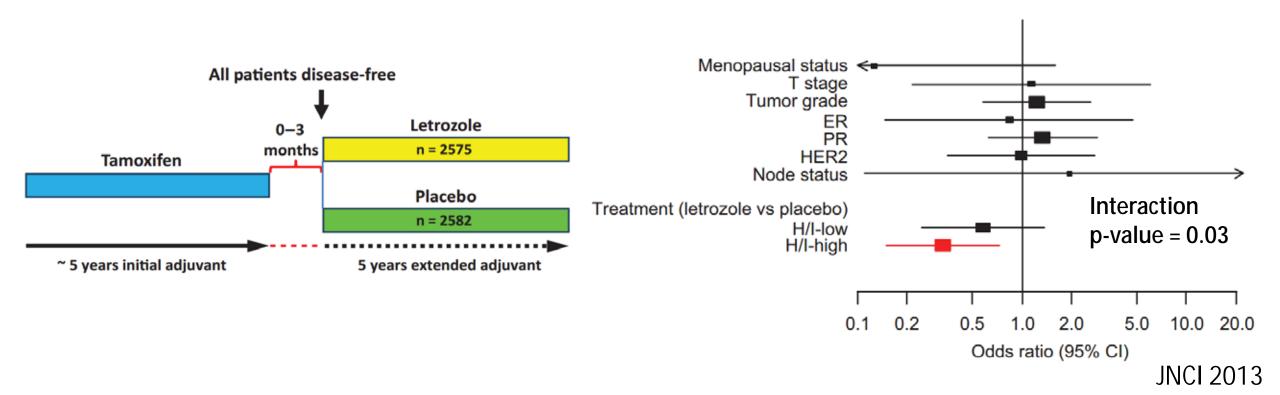
Abbreviations: CI = confidence interval; ER = oestrogen receptor; HR = hazard ratio.


Distant Late Recurrence Rates of Low Risk Groups

ASSAY	STUDY	TOTAL N	10-yr Risk	95%	6 CI
BCI	TransATAC	665	3.5%	2.0%	6.1%
PAM50 ROR	TransATAC +ABCSG08	2,137	2.4%	1.6%	3.5%
Endo Predict	ABCSG06 +ABCSG08	1,702	3.7%	0.9%	5.5%

Potential absolute % reduction of distant recurrence with extended endocrine therapy:

- 0.8-3.1% at 10-years
- 2.9-5.6% at 15 years (*assuming 1% annual recurrence hazard rate)


Withdrawing extended endocrine therapy based on current prognostic gene expression-based assays?

Prediction of Late Disease Recurrence and Extended Adjuvant Letrozole Benefit by the HOXB13/IL17BR Biomarker

Dennis C. Sgroi, Erin Carney, Elizabeth Zarrella, Lauren Steffel, Shemeica N. Binns, Dianne M. Finkelstein, Jackie Szymonifka, Atul K. Bhan, Lois E. Shepherd, Yi Zhang, Catherine A. Schnabel, Mark G. Erlander, James N. Ingle, Peggy Porter, Hyman B. Muss, Katherine I. Pritchard, Dongsheng Tu, David L. Rimm, Paul E. Goss

- Retrospective analysis of samples of the MA.17 clinical trial
- Nested case-control design: 83 recurrences vs 166 non-recurrences **a** N= 249 patients

Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline

Lyndsay N. Harris, Nofisat Ismaila, Lisa M. McShane, Fabrice Andre, Deborah E. Collyar, Ana M. Gonzalez-Angulo, Elizabeth H. Hammond, Nicole M. Kuderer, Minetta C. Liu, Robert G. Mennel, Catherine Van Poznak, Robert C. Bast, and Daniel F. Hayes

EXTENDED ENDOCRINE THERAPY

HR+/HER2-neg and NODE-negative

	INDICATION	Evidence Quality	Recommendation Strenght
EndoPredict	NO	INTERMEDIATE	MODERATE
PAM50 ROR	NO	INTERMEDIATE	MODERATE

HR+/HER2-neg and NODE-positive

No comment

Are these assays the same at the individual patient level?

NO

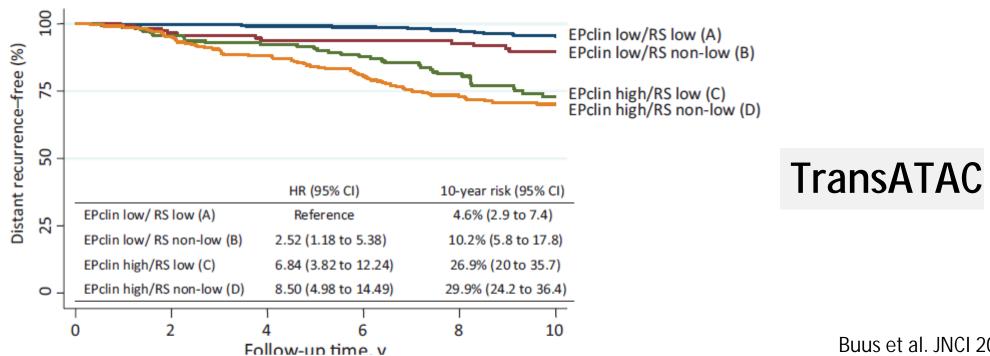
Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial

N=313 ONCOTYPEDX, MAMMAPRINT and PROSIGNA

Table 4. Kappa statistics for tests providing risk predictions*

Test	MammaPrint (low), Kappa statistic (95% CI)	Prosigna (low/intermediate), Kappa statistic (95% CI)	IHC4 (low/intermediate), Kappa statistic (95% CI)	IHC4-AQUA† (low/low-mid), Kappa statistic (95% CI)
Oncotype DX (recurrence score ≤25)	0.40 (0.30 to 0.49)	0.44 (0.33 to 0.54)	0.53 (0.41 to 0.65)	0.40 (0.30 to 0.51)
MammaPrint	_	0.53 (0.43 to 0.63)	0.33 (0.21 to 0.44)	0.42 (0.30 to 0.53)
Prosigna (low/intermediate)	_	_	0.39 (0.27 to 0.50)	0.43 (0.31 to 0.54)
IHC4 (low/intermediate)	-	-	_	0.60 (0.50 to 0.70)

- Only 39.4% were classified uniformly.
- Regarding subtype, 40.7% patients had discordant calls (BLUEPRINT vs PROSIGNA).
- BLUEPRINT was trained on IHC, while PROSIGNA was trained on natural patterns from gene expression data.
- For the individual patient, tests may provide differing risk categorization and subtype information.


Comparing PAM50/Prosigna ROR vs. OncotypeDX RS

- N=1,017 patients with ER+ disease treated with 5-years of adjuvant endocrine therapy
- PROSIGNA ROR provides more prognostic information

Comparing EndoPredict (EPclin) vs. OncotypeDX RS

- N=928 patients with ER+ disease treated with 5-years of adjuvant endocrine therapy
- **EPclin** provides more prognostic information
- This was partly but not entirely because of EPclin integrating molecular data with nodal status/tumor size

Take-home messages

- At least 4 tests based on gene expression are available in Europe.
- All are standardized/highly reproducible:
 - MammaPrint and PAM50 **à** FDA/510(k) cleared.
 - A 10% discordant rate is expected between MammaPrint FF vs. FFPE.
 - EndoPredict and PAM50 can be performed at local labs.
- These tests help **identify patients who do not need adjuvant chemotherapy** because of their low risk of relapsing at 10 years if treated with endocrine therapy-only:
 - IMPORTANT: use them with clinical-pathological variables, mostly tumor size and nodal status.
 - EndoPredict and PAM50 ROR integrate molecular data with tumor size and nodal status.
 - In patients with 2-3 high-risk clinical features treated with endocrine therapy-only,
 MammaPrint has shown prospectively (MINDACT) that:
 - The low-risk groups has a DMFS >92% at 5-years
 - The DMFS at 10 years of the low-risk is likely to be <90%. More follow-up is needed.
 - A clinically meaningful chemotherapy benefit in this group cannot be excluded.

Take-home messages

- In terms of predicting the degree of adjuvant chemotherapy benefit:
 - Evidence exists regarding the predictive ability of OncotypeDX in the high-risk group. However:
 - NSABP-B20 data are confounded by the dataset originally used to generate the assay.
 - SWOG8814 data is hypothesis generating: small sample set and no additional prediction beyond 5 years.
 - Two large phase III prospective clinical trials (TailorX and RxPonder) are evaluating the clinical utility of OncotypeDX as a predictive test in the following scenarios:
 - TAILORX: Patients with **node-negative**, HR+/HER2-negative disease with Intermediate RS (11-25).
 - RXPONDER: Patients with 1-3 N+, HR+/HER2-negative disease with Low/Intermediate RS (≤25).
 - One large phase III prospective clinical trial (**OPTIMA**) will evaluate the clinical utility of **Prosigna** as a predictive test in the following scenario:
 - Patients with pN1-2 or pT2(>3cm)pN0 HR+/HER2-negative disease.

Take-home messages

- EndoPredict and Prosigna predict late recurrence in HR+/HER2-negative breast cancer.
 - These assays might **identify patients who can be spared extended endocrine therapy** beyond 5 years due to their low risk of relapsing between period 5-10.
 - However, for this indication, the community and the patients might need to establish where to draw the cutoff based on risk, benefit, toxicity and cost (in some countries).
- Gene expression-based tests should not be considered to be the same.
 - Head-to-head comparisons for outcome and treatment benefit are needed.
 - To date.
 - Both EndoPredict and Prosigna provided more prognostic information than OncotypeDX in TransATAC.
 - This is only partially explained by the fact that EndoPredict and Prosigna include tumor size and nodal status.

When possible, use these tests! They are helpful, reproducible and valuable!

THANK YOU!