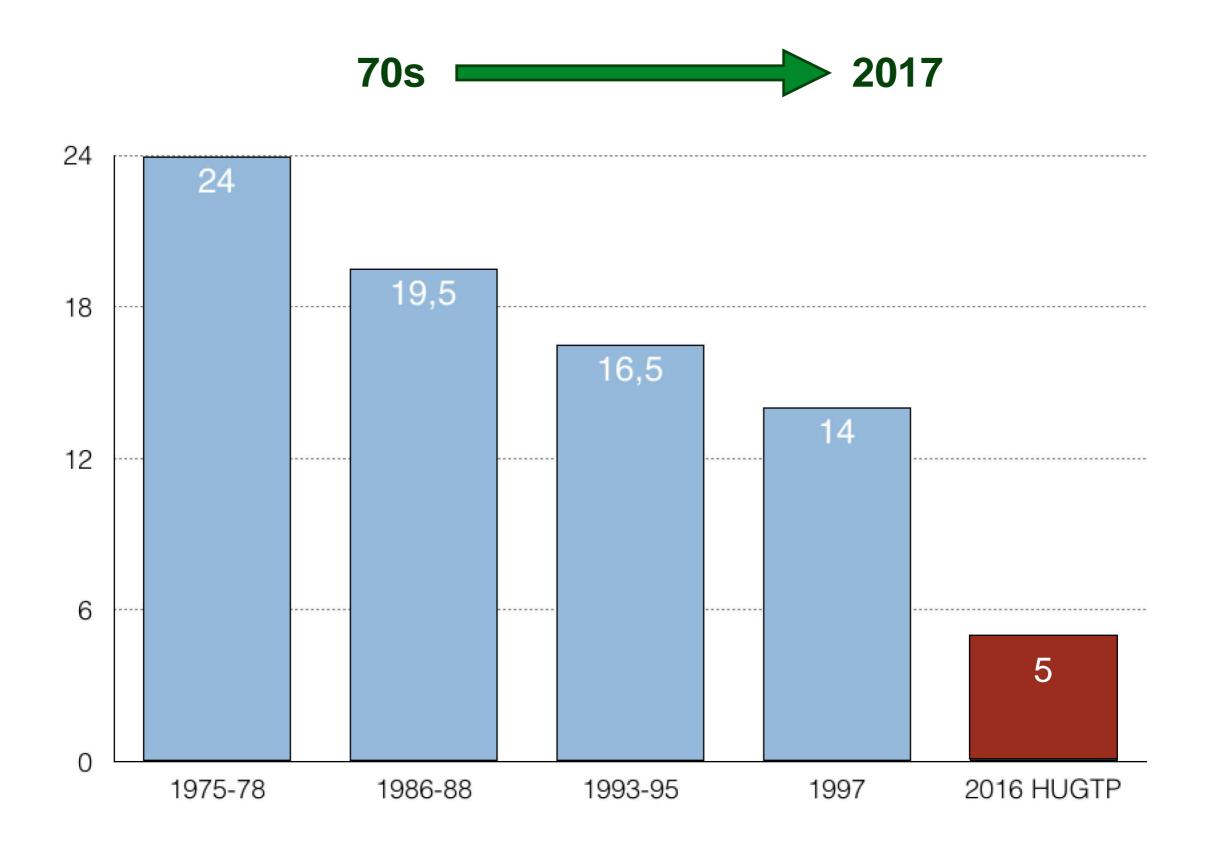
IAM EN MALALTIA MULTIVÀS TRACTAR-HO TOT O NO AGUT O DIFERIT

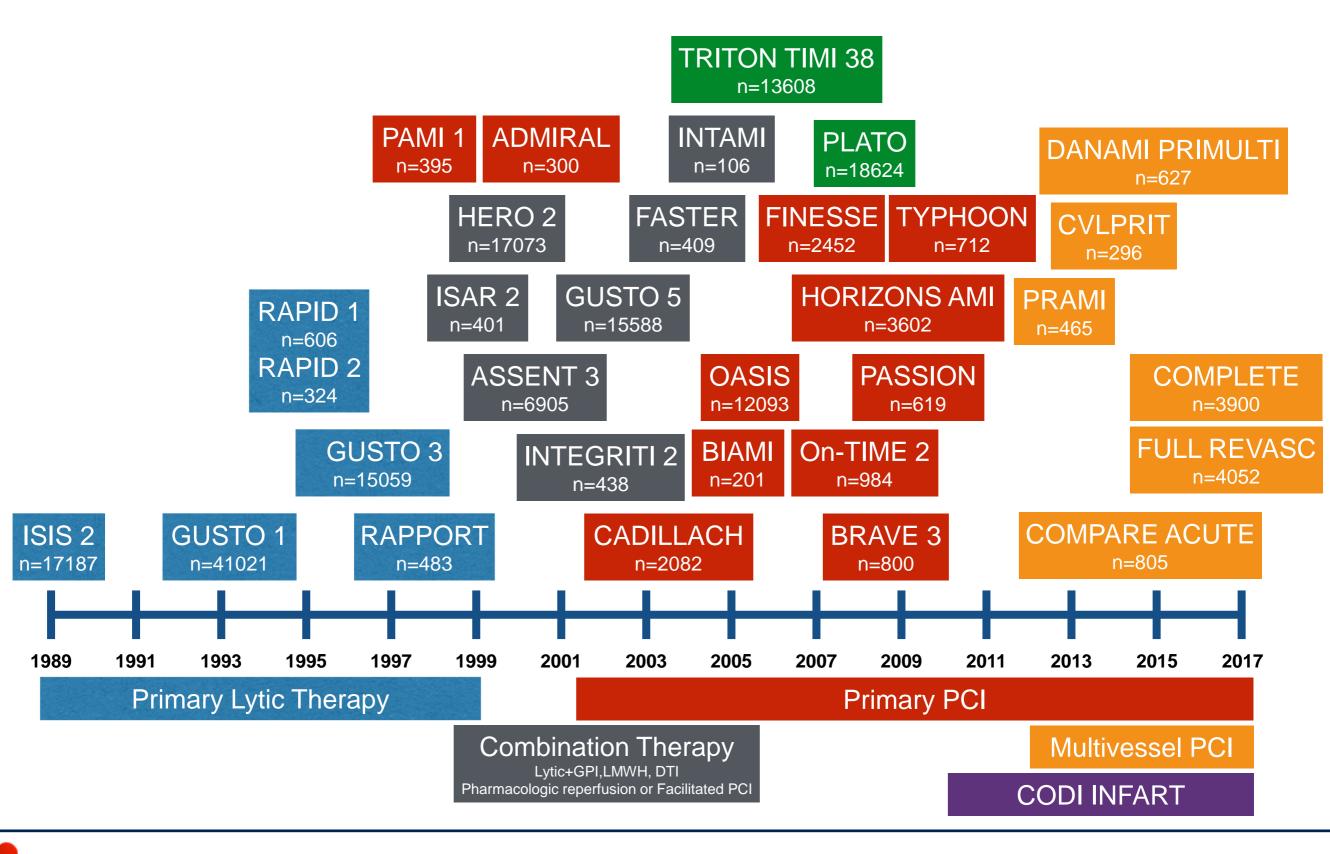
TRACTAR ALTRES LESIONS QUE LA RESPONSABLE EN LA FASE AGUDA APORTA AVANTATGES

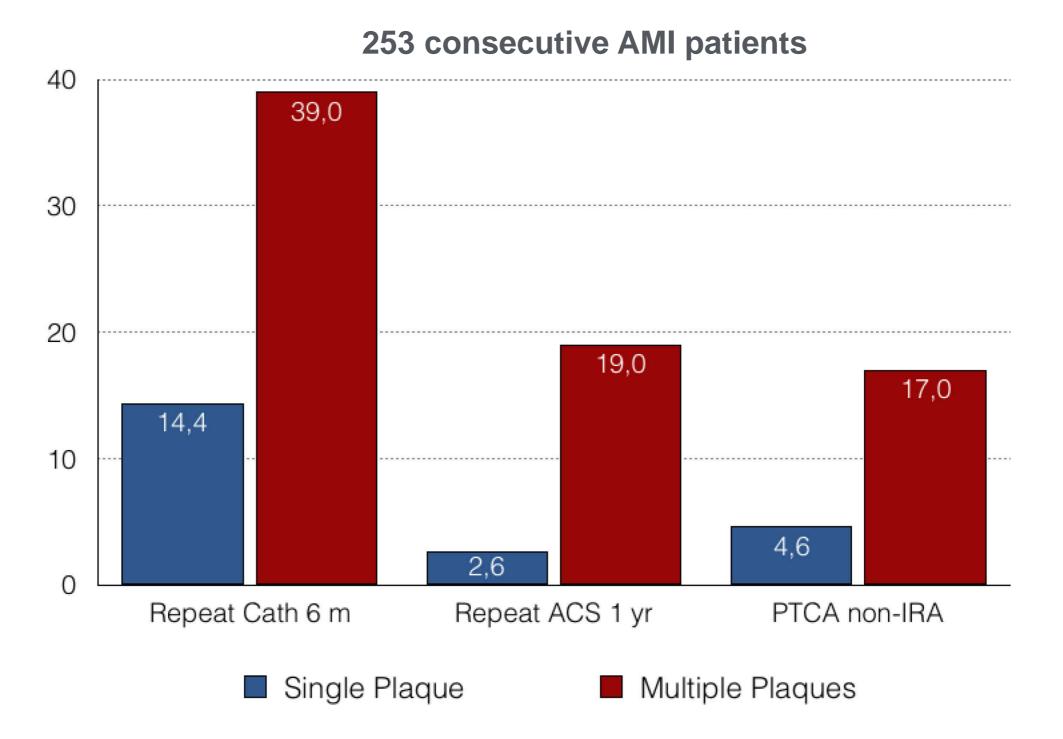
- PART I -

Oriol Rodríguez Leor Institut del Cor Germans Trias i Pujol Badalona


ICOT INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL

germanstriashospital

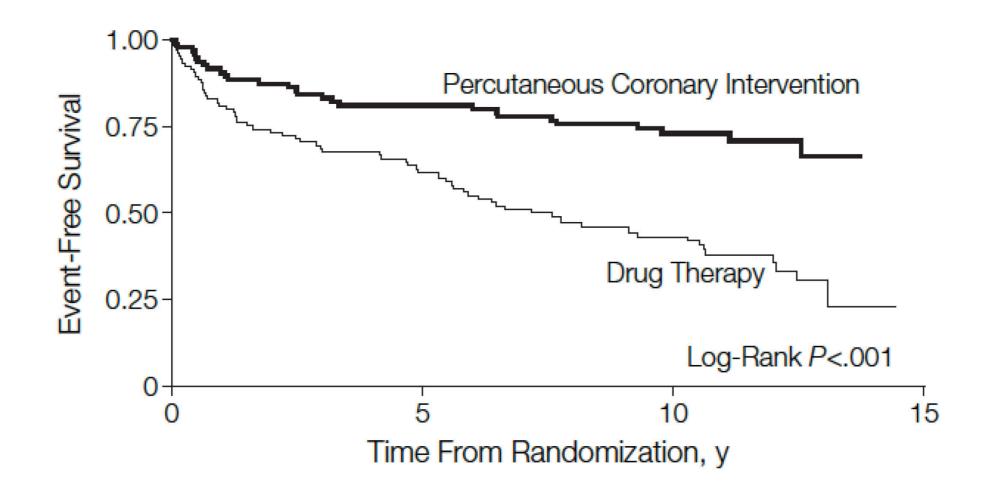

In-Hospital Mortality Evolution in STEMI


Evolution of STEMI Patient Management

STEMI management has evolved over the past 3 decades based on new clinical data involving technologic and pharmacologic advances

Multiple Coronary Plaques in Patients with STEMI

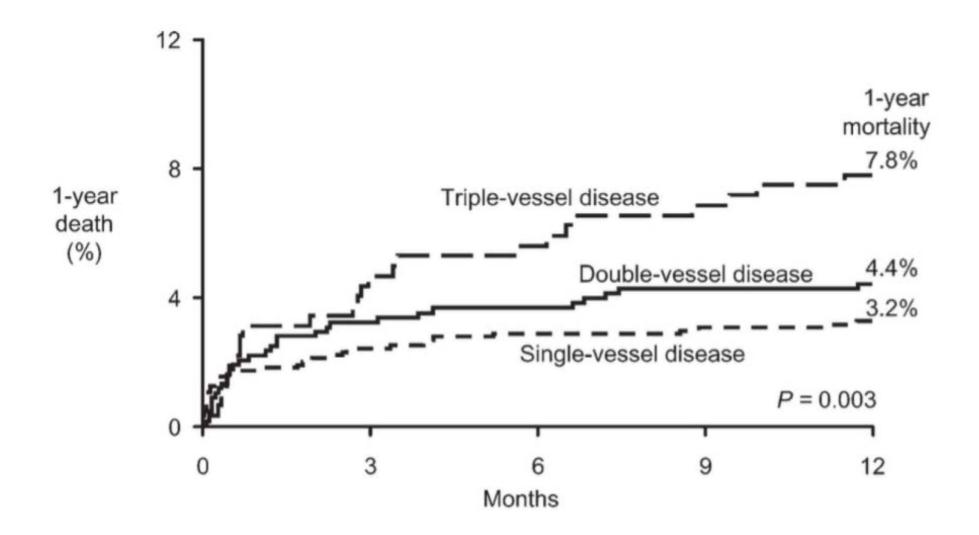
Clinical Outcomes of Patients with Acute Myocardial Infarction and Single or Multiple Complex Coronary Plaques


Complex Coronary Plaques (Thrombus, Ulceration, Plaque Irregularity, Impaired Flow)

Goldstein JA et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000;343:915-22

Effect of PCI in Silent Ischemia After Myocardial Infarction

Among patients with recent MI and silent myocardial ischemia verified by stress imaging, PCI compared with anti-ischemic drug therapy reduced the long-term risk of MACE

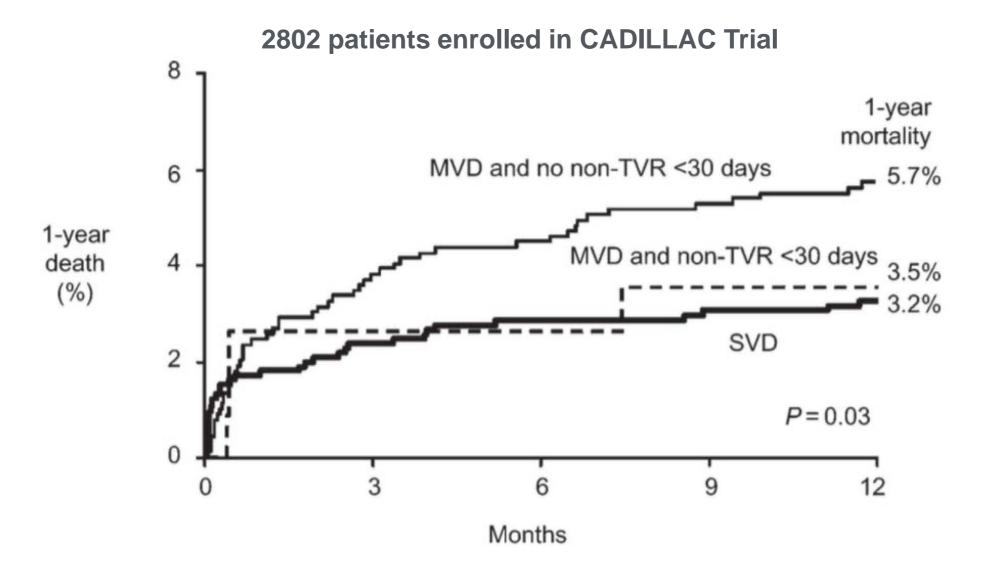

Cardiac death 0,3% vs 2,1% (HR 0,19 [0,05-0,67] p=0,01) **Non-Fatal Recurrent MI** 1,2% vs 4,7% (HR 0,31 [0,15-0,65] p=0,002)

Cumulative Incidence of Death According to Number of Vessels

CADILLAC Trial

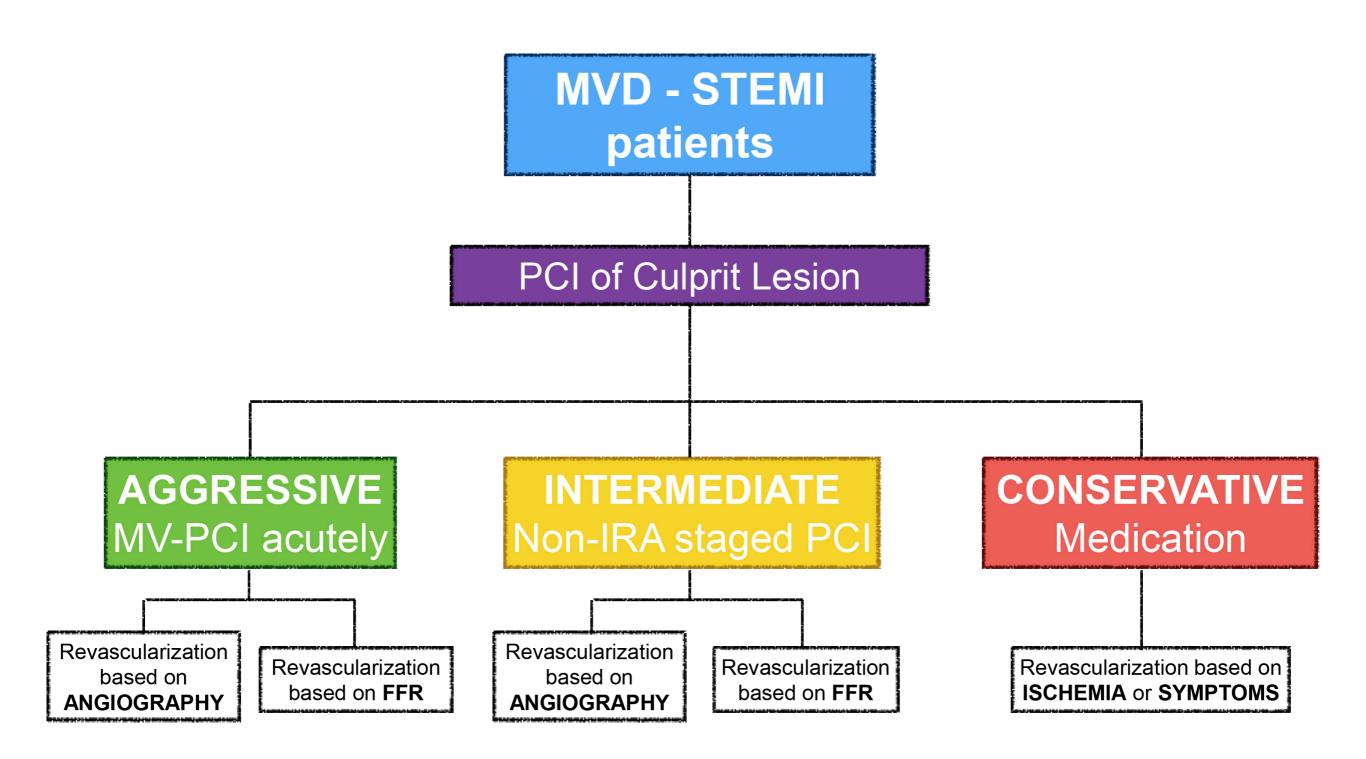
Cumulative incidence of death according to the presence of single-, double-, or triple-vessel disease

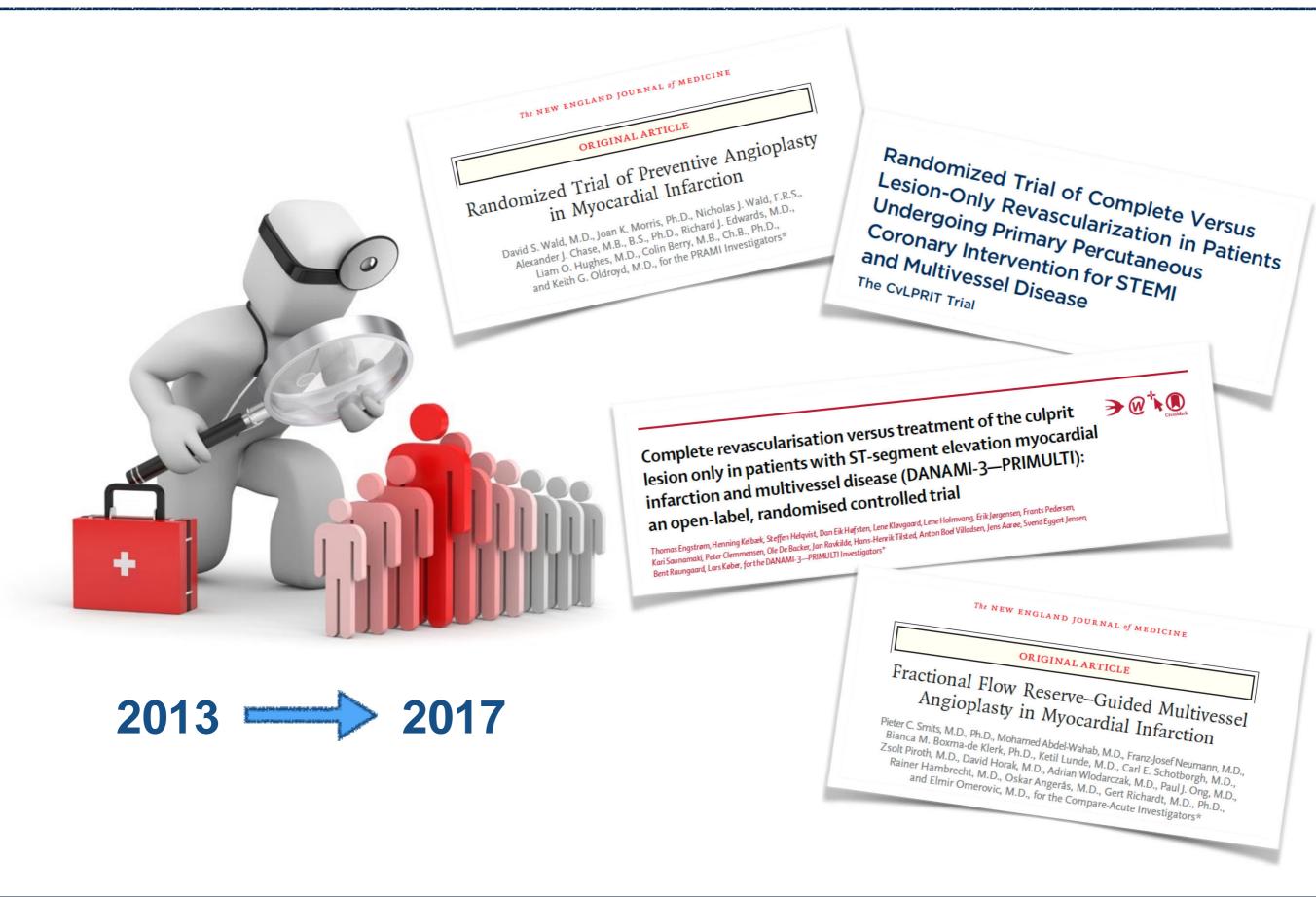
2802 patients enrolled in CADILLAC Trial


The presence of significant concomitant CAD in vessels remote from the IRA should be recognized as a major adverse prognostic factor in patients with STEMI

Sorajja P et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary PCI for AMI. Eur Heart J 2007;28:1709-1716

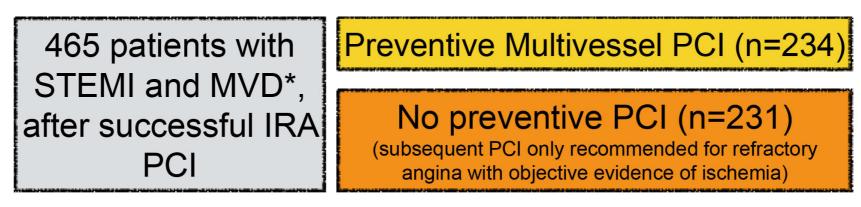
Cumulative Incidence of Death According to Number of Vessels

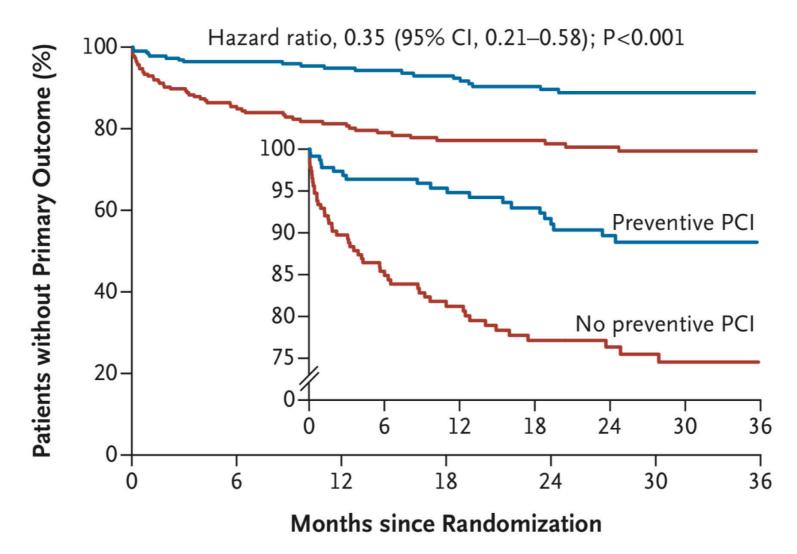

CADILLAC Trial


Cumulative incidence of death in patients with MVD stratified according to whether or not subsequent revascularization was performed within 30 days

Greater survival was evident in patients with multivessel disease in whom revascularization of remote non-infarct-artery-related disease was subsequently performed probably related to deleterious effects of plaque burden and diffuse ischaemia

Sorajja P et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary PCI for AMI. Eur Heart J 2007;28:1709-1716




ICOT INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL

N

PRAMI Trial

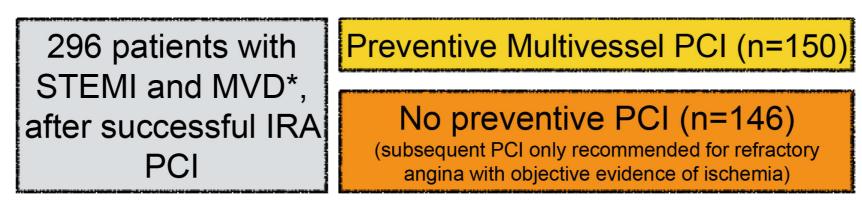
*Angio stenosis >50%

Primary Outcome: death from cardiac causes, non-fatal MI, refractory angina

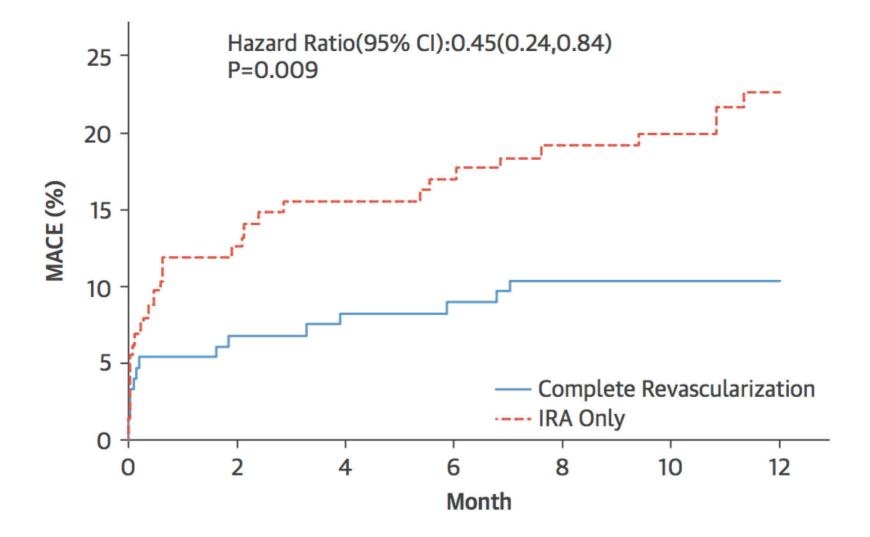
PRAMI Trial

The results were considered conclusive by the data and safety monitoring

committee, which recommended that the trial be stopped early


Outcome	Preventive PCI (N = 234)	No Preventive PCI (N=231)	Hazard Ratio (95% CI)	P Value	
	no. (ofevents			
Primary outcome					
Death from cardiac causes, nonfatal myocardial infarction, or refractory angina†	21	53	0.35 (0.21–0.58)	<0.001	
Death from cardiac causes or nonfatal myocardial infarction†	11	27	0.36 (0.18–0.73)	0.004	
Death from cardiac causes	4	10	0.34 (0.11–1.08)	0.07	
Nonfatal myocardial infarction	7	20	0.32 (0.13–0.75)	0.009	
Refractory angina	12	30	0.35 (0.18–0.69)	0.002	
Secondary outcomes					
Death from noncardiac causes	8	6	1.10 (0.38–3.18)	0.86	
Repeat revascularization	16	46	0.30 (0.17-0.56)	< 0.001	

Preventive PCI in noninfarct coronary arteries with major stenoses


significantly reduced the risk of adverse CV events, as compared with PCI

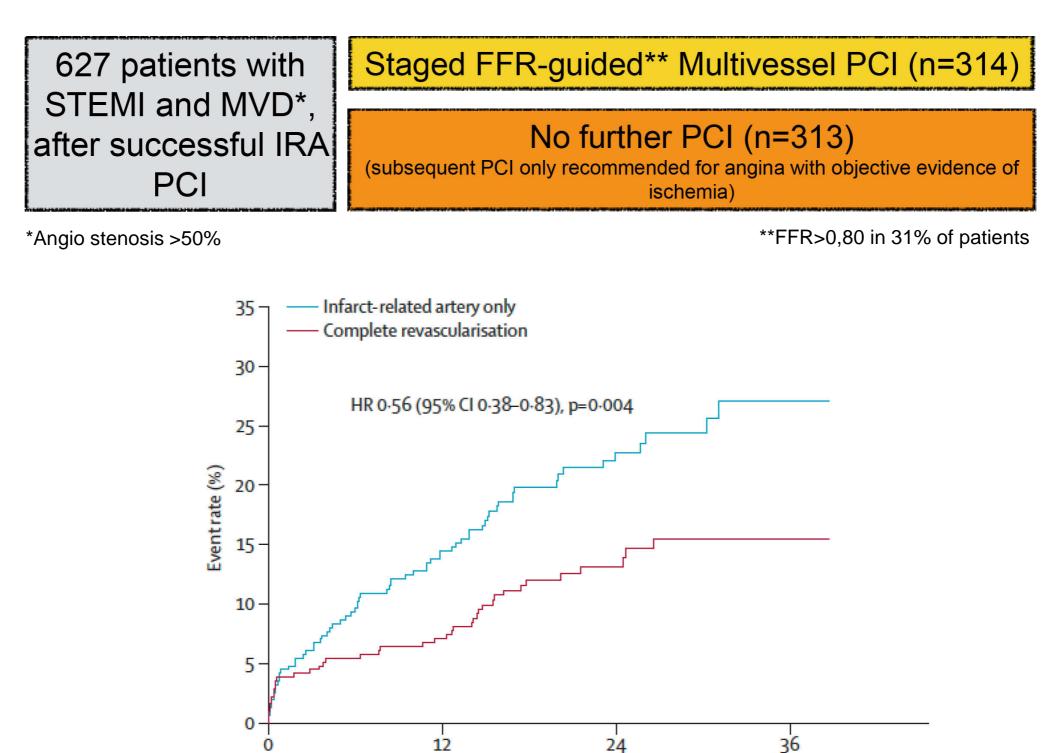
limited to the infarct artery

CvLPRIT Trial

*Angio stenosis >70% in 1 view or >50% in 2 views

Primary Outcome: all-cause death, recurrent MI, HF, ischemia-driven revascularization

Gershlick AH et al. Randomized trial of complete vs lesion-only revascularization in patients undergoing primary PCI for STEMI and multivessel disease. J Am Coll Cardiol 2015;65:963-72


CvLPRIT Trial

Clinical Outcomes at 12 months

	Preventive PCI	NO Preventive PCI		
Event	N = 150 (%)	N = 146 (%)	HR (95%)	Р
Total MACE	15 (10.0)	31 (21.2)	0.45 (0.24, 0.84)	0.009
Mortality	2 (1.3)	6 (4.1)	0.32 (0.06, 1.60)	0.14
Recurrent MI	2 (1.3)	4 (2.7)	0.48 (0.09, 2.62)	0.39
Heart Failure	4 (2.7)	9 (6.2)	0.43 (0.13, 1.39)	0.14
Repeat Revascularization	7 (4.7)	12 (8.2)	0.55 (0.22, 1.39)	0.2

Index admission complete revascularization significantly lowered the rate of the composite primary endpoint at 12 months compared with treating only the IRA

DANAMI 3 - PRIMULTI

Follow-up (months)

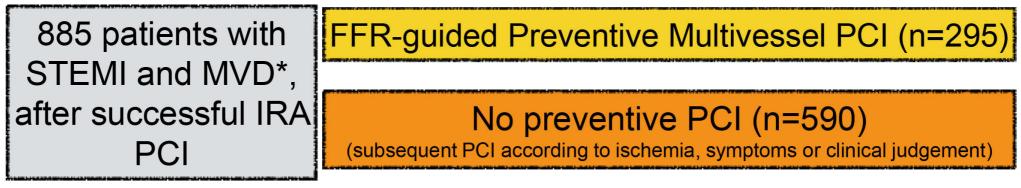
24

Primary Outcome: all-cause death, ischemia-driven non-target vessel revascularization

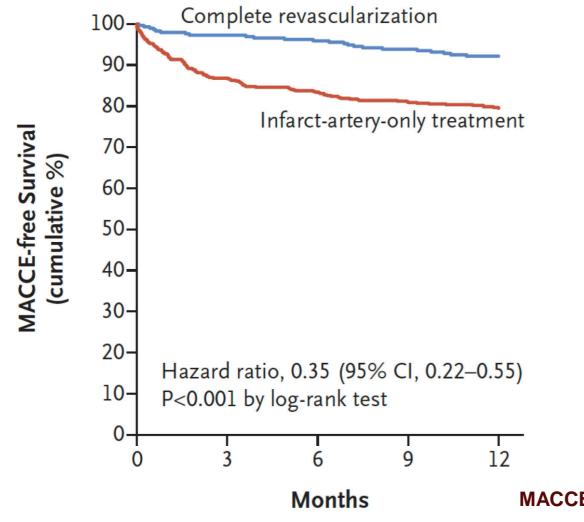
0

Engstrom T et al. Complete revascularization vs treatment of the culprit lesion only in patients with STEMI and multivessel disease (DANAMI-3 PRIMULTI): an open-label randomised trial. Lancet 2015;386:665-71

DANAMI 3 - PRIMULTI


Clinical Outcomes at 12 months

	Infarct-related artery only (n=313)	Complet revascul (n=314)	arisation	Hazar (95%)	d ratio CI)	р
Primary endpoint*	68 (22%)	40 (13%)	0.56 (0.38-0.83)	0.004
All-cause mortality	11 (4%)	15 (5%)		1.40 (0.63-3.00)	0.43
Non-fatal reinfarction	16 (5%)	15 (5%)		0.94	(0-47-1-90)	0.87
Ischaemia-driven revascularisation	52 (17%)	17 (5%)		0.31 (0·18-0·53)	<0.0001
Secondary endpoints						
Cardiac death	9 (3%)	5 (2%)		0.56 (0.19-1.70)	0.29
Cardiac death or non-fatal myocardial infarction	25 (8%)	20 (6%)		0.80 (0.45-1.45)	0.47
Urgent percutaneous coronary intervention	18 (6%)	7 (2%)	t	0.38 (0.16-0.92)	0.03
Non-urgent percutaneous coronary intervention	27 (9%)	8 (3%)		<mark>0·29</mark> (0·13-0·63)	0.002
Unplanned coronary-artery bypass graft surgery	7 (2%)	3 (1%)		0.43 (0.11-1.70)	0.22
			Infarct-re artery on (n=313)		Complete revascularis (n=314)	p ation
Periprocedural myocardial infarction			0		2 (1%)	0.2
Bleeding requiring transfusion or surg		4 (1%)		1 (<1%)	0.2	
Contrast-induced nephropathy (>50%	rise in plasma cre	atinine)	7 (2%)		6 (2%)	0.8
Stroke			1 (<1%)		4 (1%)	0.2


Complete revascularisation guided by FFR measurements significantly reduces the risk of future events driven by significantly fewer repeat revascularisations, because all-cause mortality and non-fatal reinfarction did not differ between groups

Engstrom T et al. Complete revascularization vs treatment of the culprit lesion only in patients with STEMI and multivessel disease (DANAMI-3 PRIMULTI): an open-label randomised trial. Lancet 2015;386:665-71

COMPARE ACUTE Trial

*Angio stenosis >50% FFR performed in both groups of treatment

- FFR<0,80 in around 50% of lesions
- In the IRA-PCI, clinically indicated elective PCI of the N-IRA (according to ischemia, symptoms or clinical judgement) within 45 days was not counted as event
- MV-PCI had N-IRA PCI during index PCI in 83,4%
- DES (EES) in 98,9%

MACCE: all-cause death, recurrent MI, revascularization, cerebrovascular events

59 IRA only PCI patients had N-IRA revascularization within 45 days and were not counted as events

Smits PC et al. FFR-guided multivessel angioplasty in myocardial infarction. COMPARE ACUTE Trial. N Engl J Med 2017;376:1234-44

COMPARE ACUTE Trial

12 months Clinical Outcomes

End Point	Complete Revascularization (N=295)	Infarct-Artery-Only Treatment (N=590)	Hazard Ratio (95% CI)	P Value
	numbe	r (percent)		
Primary				
MACCE*	23 (7.8)	121 (20.5)	0.35 (0.22–0.55)	<0.001
Death from any cause	4 (1.4)	10 (1.7)	0.80 (0.25–2.56)	0.70
Cardiac event	3 (1.0)	6 (1.0)	1.00 (0.25–4.01)	1.00
Myocardial infarction	7 (2.4)	28 (4.7)	0.50 (0.22–1.13)	0.10
Spontaneous event	5 (1.7)	17 (2.9)	0.59 (0.22–1.59)	0.29
Periprocedural event	2 (0.7)	11 (1.9)	0.36 (0.08–1.64)	0.19
Revascularization	18 (6.1)	103 (17.5)	0.32 (0.20–0.54)	<0.001
PCI	15 (5.1)	98 (16.6)	0.37 (0.24–0.57)	<0.001
Coronary-artery bypass graft	3 (1.0)	5 (0.8)	1.20 (0.29–5.02)	0.80
Cerebrovascular event	0	4 (0.7)	NA	NA

59 patients in the IRA PCI group had elective non-IRA revascularization within 45 days and did not count as event

MACCE: death from any cause, non-fatal AMI, revascularization, cerebrovascular events at 12 months

Smits PC et al. FFR-guided multivessel angioplasty in myocardial infarction. COMPARE ACUTE Trial. N Engl J Med 2017;376:1234-44

Ongoing Big Randomized Trials

COMPLETE TRIAL	FULL C? REVASC FULL REVASC TRIAL
Complete vs culprit-only revascularization to treat multivessel disease after primary PCI for STEMI	FFR-guidance for complete non- culprit revascularizatioin
STEMI with MVD	STEMI or high-risk NSTEMI with MVD
Staged non-culprit PCI + OMT vs OMT	FFR-guided PCI of all non-culprit lesions during index hospitalization vs conservative management
3900 patients	4052 patients
Enrollment finished Results in march 2018	44 patients enrolled on april 28th Results in october 2019
Primary outcome: CV death or new MI 1-4 yr	Primary outcome: all-cause mortality and MI 1 yr

IAM EN MALALTIA MULTIVÀS TRACTAR-HO TOT O NO AGUT O DIFERIT

TRACTAR ALTRES LESIONS QUE LA RESPONSABLE EN LA FASE AGUDA APORTA AVANTATGES

- PART II -

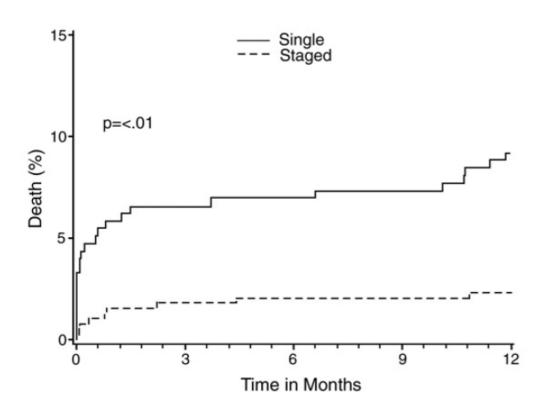
Oriol Rodríguez Leor Institut del Cor Germans Trias i Pujol Badalona

ICOT INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL

germanstriashospital

2014 ESC Myocardial Revascularization Guidelines

Recommendations	Class ^a	Level ^b	Ref ^c	
Strategy				
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.	lla	В	234,264–266	234. Kornowski (HORIZONS AMI)_JACC 2011 264. Hannan (New York Registry)_JACC Interv 20 265. Toma (APEX AMI)_ Eur Heart J 2010 266. Vlaar (Meta-Analysis)_J Am Coll Cardiol 2011
Staged revascularization of non-culprit lesions should be considered in STEMI patients with multivessel disease in case of symptoms or ischaemia within days to weeks after primary PCI.	lla	в	235	235. Politi. Heart 2010
Immediate revascularization of significant non-culprit lesions during the same procedure as primary PCI of the culprit vessel may be considered in selected patients.	ПР	B	267	267. Wald. N Engl J Med 2013
In patients with continuing ischaemia and in whom PCI of the infarct-related artery cannot be performed, CABG should be considered.	lla	с		


N

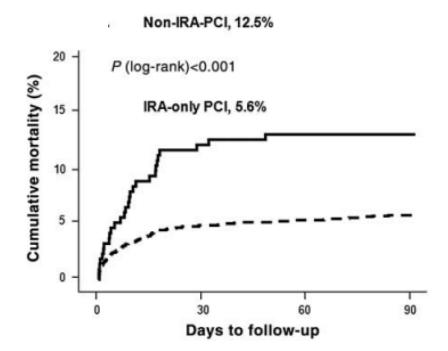
HORIZONS AMI Trial

668 of the 3602 STEMI patients enrolled (18.5%) underwent PCI of culprit and nonculprit lesions for multivessel disease

Patients were categorized into a single PCI strategy (n=275) versus staged PCI (n=393)

CONCLUSION: a deferred angioplasty strategy of nonculprit lesions should remain the standard approach in patients with STEMI undergoing primary PCI, as multivessel PCI may be associated with a greater hazard for mortality and stent thrombosis

- Retrospective nonrandomized subanalysis
- Specific reason why operator chose a single procedure vs a staged approach was not prospectively collected
- Low number of events (31 deaths / 25 cardiac deaths/19 stent thrombosis) -> Multivariate Model Underpowered
- BMS vs Taxus Express


2014 EHJ Revascularization Guidelines

APEX AMI Trial

2201 of the 5373 STEMI patients enrolled (18.5%) underwent PCI of culprit and nonculprit lesions for multivessel disease

Patients were categorized into a single PCI strategy (n =217) versus no PCI (n =1984)

CONCLUSION: Non-culprit coronary interventions were performed at the time of primary PCI in 10% of MVD patients and were significantly associated with increased mortality. Our data support current guideline recommendations discouraging the performance of such procedures in stable primary PCI patients.

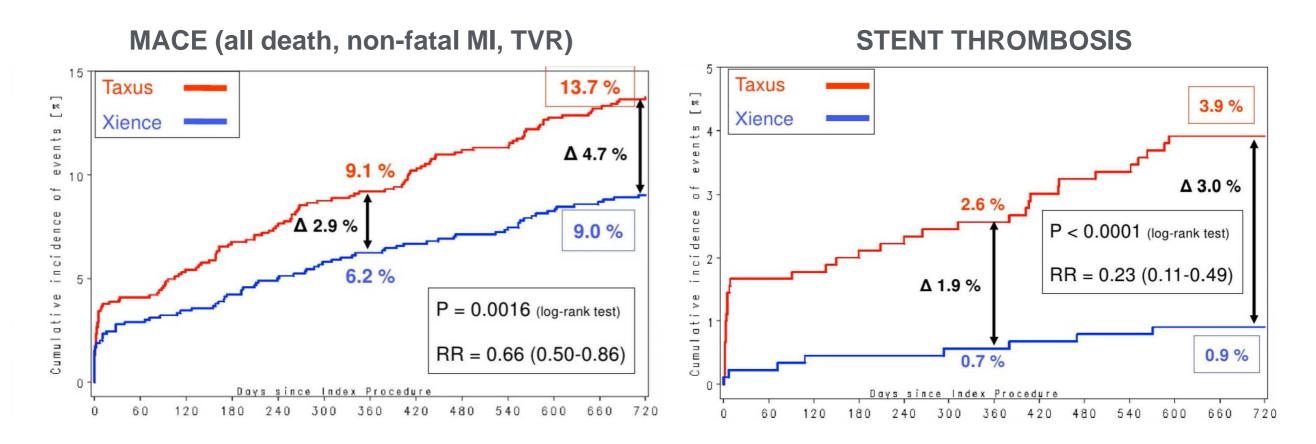
ICOT INSTITUT DEL COR DEL GERMANS

- Retrospective nonrandomized subanalysis
- Specific reason why operator chose a single procedure vs a staged approach was not prospectively collected
- Low number of events (135 deaths)-> Multivariate Model Underpowered
- Only 38% DES (1st generation)
- Lack of information on outcomes in patients not treated at the index procedure

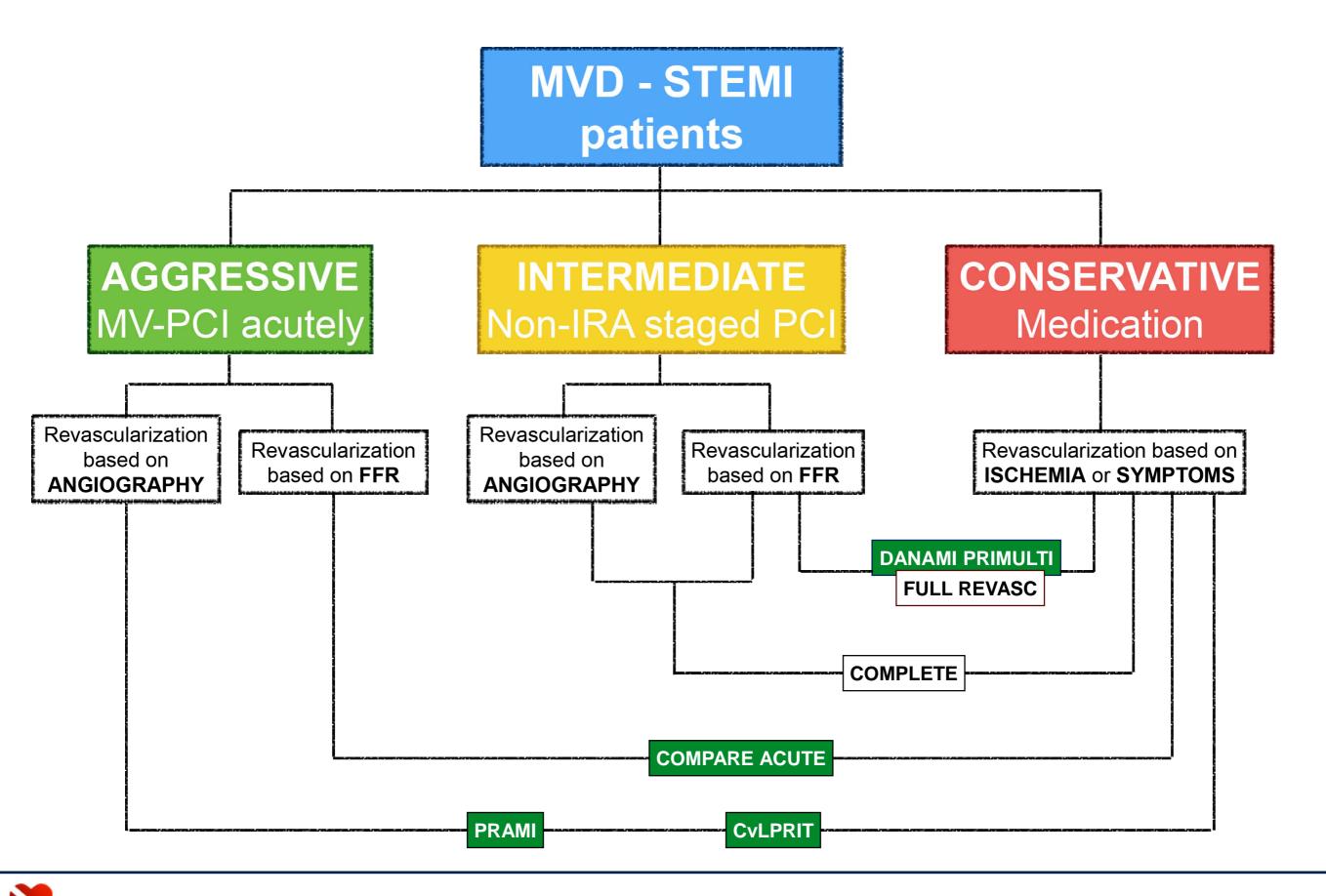
Hannan et al, JACC Intv

New York State Registry (3521 patients) 2003-2006

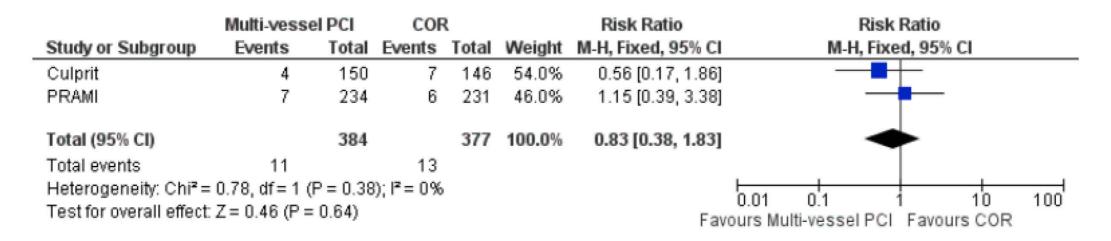
CONCLUSION: Our findings support the ACC/AHA recommendation that culprit vessel PCI be used for STEMI patients with multivessel disease at the time of the index PCI when patients are not hemodynamically compromised. However, staged PCI within 60 days after the index procedure, including during the index admission, is associated with risk-adjusted mortality rates that are comparable with the rate for culprit vessel PCI alone.


Outcome by Subgroup	Culprit Vessel Revascularization at the Time of PPCI	Multivessel Revascularization at the Time of PPCI	Percentage Difference	p Valu
All patients	n = 503	n = 503		
Death, %				
In-hospital	2.0	3.4	1.4	0.14
12 months	5.5	7.1	1.6	0.23
24 months	6.6	8.6	2.0	0.17
42 months	10.8	11.8	1.0	0.23
Patients without hemodynamic instability, LVEF <20%, malignant ventricular arrhythmia	n = 458	n = 458		
Death, %				
In-hospital	0.9	2.4	1.5	0.04
12 months	4.2	5.8	1.6	0.13
24 months	4.9	7.2	2.3	0.07
42 months	6.7	10.4	3.7	0.08

- Observational study (selection bias)
- No information about medical treatment
- No information about DES use, but 1st generation
- Very low In-hospital mortality in the culprit-only group (0,9%!!)


First Generation vs Contemporary DES

COMPARE Trial


2-Year Follow-Up of a Randomized Controlled Trial of Everolimus- and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice

The substantial clinical benefit of the EES over the PES with regard to measures of both safety and efficacy is maintained at 2 years in real-life practice with an increasing benefit in terms of safety and efficacy between 1 year and 2 years

Risk of Major Bleeding in Follow-up

Risk of Contrast-Induced Nephropaty in Follow-up

	Multi-vesse	PCI	COF	2		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Culprit	2	150	2	146	26.4%	0.97 [0.14, 6.82]	
Politi	1	65	3	84	34.2%	0.43 [0.05, 4.05]	
PRAMI	1	234	3	231	39.4%	0.33 [0.03, 3.14]	
Total (95% CI)		449		461	100.0%	0.53 [0.16, 1.77]	
Total events	4		8				
Heterogeneity: Chi ² =	0.58, df = 2 (P = 0.75	i); I² = 0%				
Test for overall effect	Z=1.02 (P=	0.31)				Fav	ours Multi-vessel PCI Favours COR

Meta-Analysis of RCT and nonRCT Comparing Multivessel vs Culprit Only PCI

Long Term Mortality Stratified by Study Method

	Multi-Vess		Culprit-Or	-		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.15.1 Randomized							
Dambrink 2010	2	80	0	41	0.1%	2.64 [0.12, 56.35]	
Di Mario 2004	1	52	0	41	0.1%	2.42 [0.10, 60.91]	
Politi 2009	10	130	13	84	2.8%	0.46 [0.19, 1.09]	
Subtotal (95% CI)		262		166	3.0%	0.61 [0.28, 1.33]	-
Total events	13		13				
Heterogeneity: Chi ² = 2.01	1, df = 2 (P =	.37); 2=	1%				
Test for overall effect: Z =	1.24 (P = .22)					
1.15.2 Non-Randomized							
Barringhaus2010	2	252	30	956	2.4%	0.25 [0.06, 1.04]	
Chen 2010	13	210	66	351	8.9%	0.28 [0.15, 0.53]	
Corpus 2004	17	152	42	354	4.3%	0.94 [0.51, 1.70]	
Dziewierz 2010	11	70	57	707	1.7%	2.13 [1.06, 4.27]	
Esteves-Loureiro 2010	1	59	25	208	2.1%	0.13 [0.02, 0.95]	
Han 2008	3	93	4	148	0.6%	1.20 [0.26, 5.49]	
Hannan 2010	105	1300	116	1300	20.6%	0.90 [0.68, 1.18]	
Hudzik 2009	32	457	265	1642	20.7%	0.39 [0.27, 0.57]	-
Jin 2007	7	215	19	901	1.4%	1.56 [0.65, 3.77]	
Kalarus 2007	14	193	112	605	9.7%	0.34 [0.19, 0.62]	
Khattab 2008	2	25	3	45	0.4%	1.22 [0.19, 7.82]	
Mohamad 2009	4	19	3	30	0.4%	2.40 [0.47, 12.18]	
Qarawani 2008	9	95	2	25	0.6%	1.20 [0.24, 5.96]	
Rahman 2010	51	578	122	1449	12.2%	1.05 [0.75, 1.48]	+
Rigattieri 2008	1	64	7	46	1.5%	0.09 [0.01, 0.75]	
Roe 2001	17	25	10	61	0.4%	10.84 [3.68, 31.90]	
Seo 2009	4	82	45	217	4.5%	0.20 [0.07, 0.56]	
Telayna 2002	0	17	16	96	1.0%	0.14 [0.01, 2.44]	· · · · · · · · · · · · · · · · · · ·
Toma 2010	27	217	111	1984	3.7%	2.40 [1.53, 3.75]	
Subtotal (95% CI)		4123		11125	97.0%	0.75 [0.65, 0.86]	•
Total events	320		1055				
Heterogeneity: Chi ² = 113		P < .000	01); I ² = 84	%			
Test for overall effect: Z =							
Total (95% CI)		4385		11291	100.0%	0.74 [0.65, 0.85]	•
Total events	333		1068				
Heterogeneity: Chi ² = 116		P<.000		%			
Test for overall effect: Z =							0.01 0.1 1 10 1
Test for subgroup differer			1(P = 62)	I ² = 0%			Favours Multi-Vessel PCI Favours Culprit-Only PC

Multivessel PCI asociated with lower long term mortality OR 0,74 (0,65-0,85) p<0,001

Bainey KR et al. Complete vs culprit-only revascularization for patients with MVD undergoing primary PCI for STEMI: a systematic review and meta-analysis. Am Heart J;2014;167:1-14

2014 ESC Myocardial Revascularization Guidelines

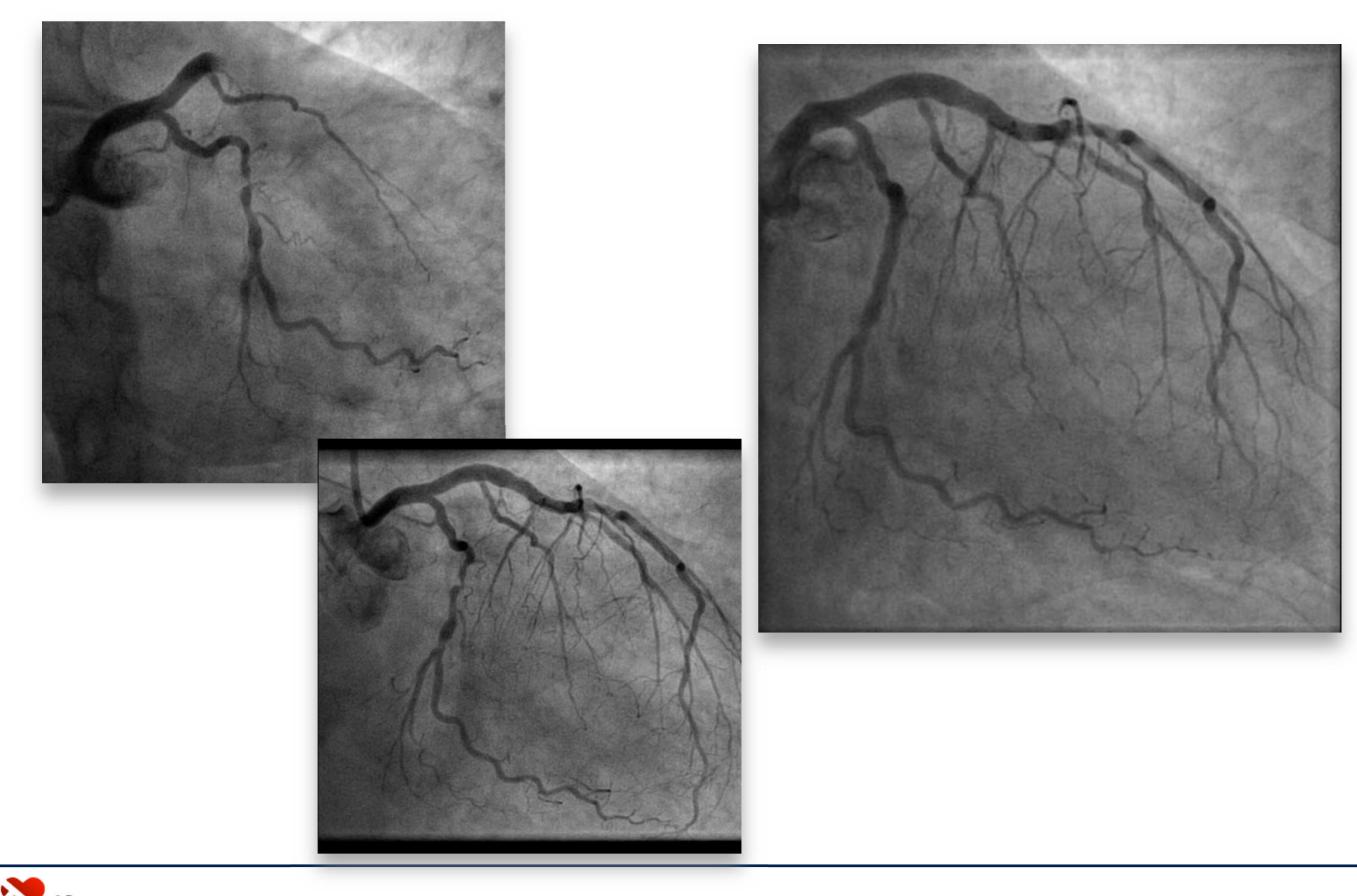
Recommendations	Class ^a	Level ^b	Ref ^c	
Strategy				
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.	lla	В	234,264–266	234. Kornowski (HORIZONS AMI)_JACC 2011 264. Hannan (New York Registry)_JACC Interv 20 265. Toma (APEX AMI)_ Eur Heart J 2010 266. Vlaar (Meta-Analysis)_J Am Coll Cardiol 2011
Staged revascularization of non-culprit lesions should be considered in STEMI patients with multivessel disease in case of symptoms or ischaemia within days to weeks after primary PCI.	lla	в	235	235. Politi. Heart 2010
Immediate revascularization of significant non-culprit lesions during the same procedure as primary PCI of the culprit vessel may be considered in selected patients.	ПР	B	267	267. Wald. N Engl J Med 2013
In patients with continuing ischaemia and in whom PCI of the infarct-related artery cannot be performed, CABG should be considered.	lla	с		

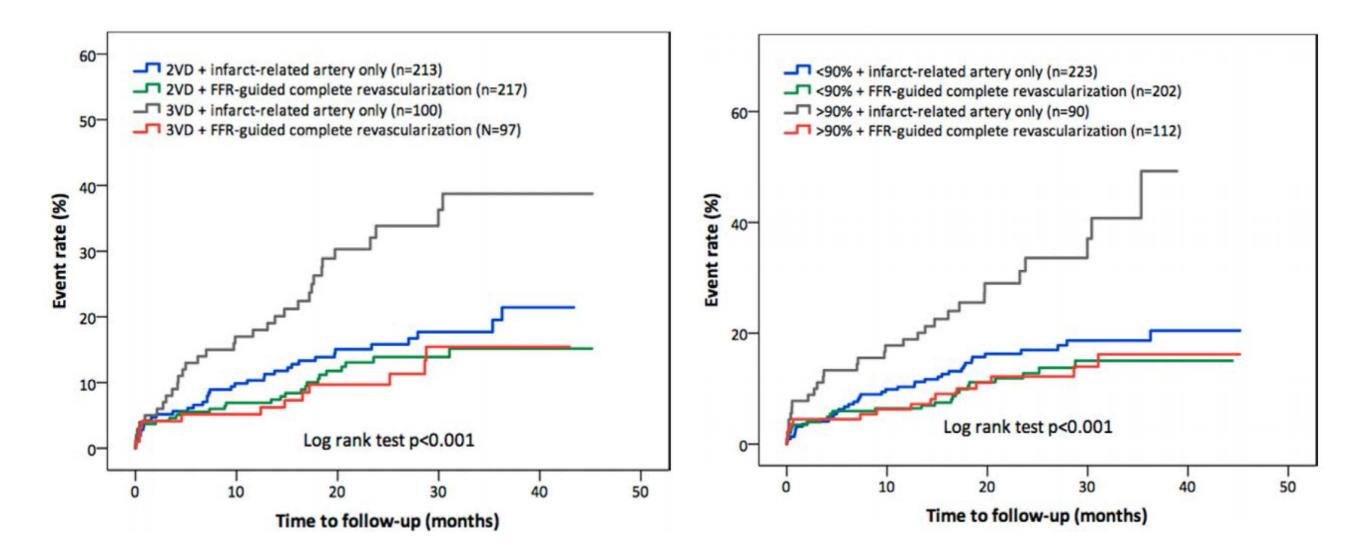
N

2017 SCC Myocardial Revascularization Guidelines?

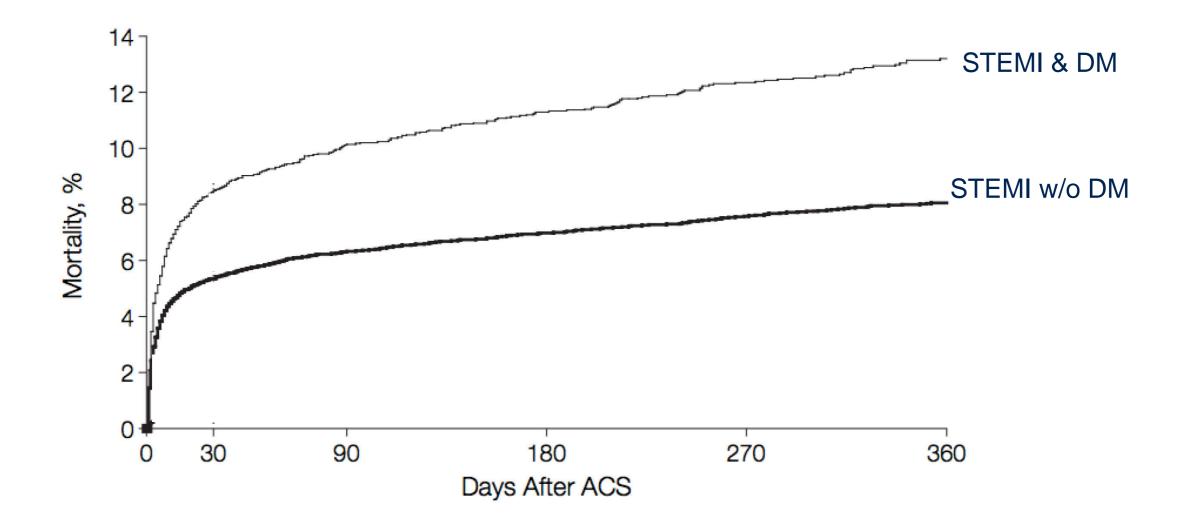
Recommendations	Class ^a	Level ^b	Ref
Strategy			
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.		В	234,264–266
Staged revascularization of non-culprit lesions should be considered in STEMI patients with multivessel disease in case of symptoms or ischaemia within days to weeks after primary PCI.			235
Immediate revascularization of significant non-culprit lesions during the same procedure as primary PCI of the culprit vessel may be considered in selected patients.			267
In patients with continuing ischaemia and in whom PCI of the infarct-related artery cannot be performed, CABG should be considered.		с	

N


Multivessel revascularization seems the best option in patients with STEMI...


...but should we do it during the index procedure? (acute multivessel PCI)

Multivessel PCI during the Index Procedure

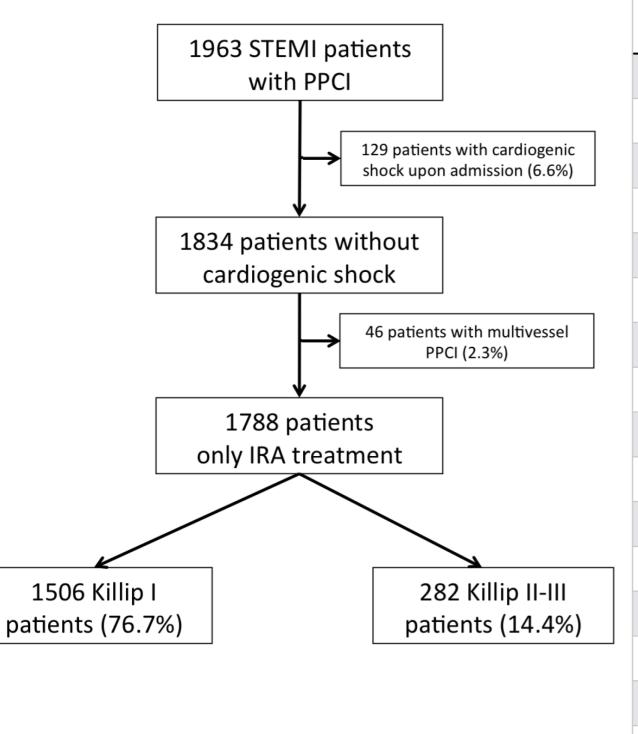

Impact of the Disease Severity on Outcome

The benefit from FFR-guided complete revascularization was dependent in the presence of 3-vessel disease and noninfarct diameter stenosis >90% (particularly pronounced in patients with both these angiographic characteristics)

Lønborg J et al. FFR-guided complete revascularization improves the prognosis of patients with STEMI and severe nonculprit disease. A DANAMI 3 PRIMULTI substudy. Circ Cardiovasc Interv 201710:e004460

Diabetes confers a significant adverse prognosis, which highlights the importance of aggressive strategies to manage this high-risk population

Diabetes at presentation was associated with significantly higher mortality 1 year after STEMI (HR, 1.22; 95% CI, 1.08- 1.38)

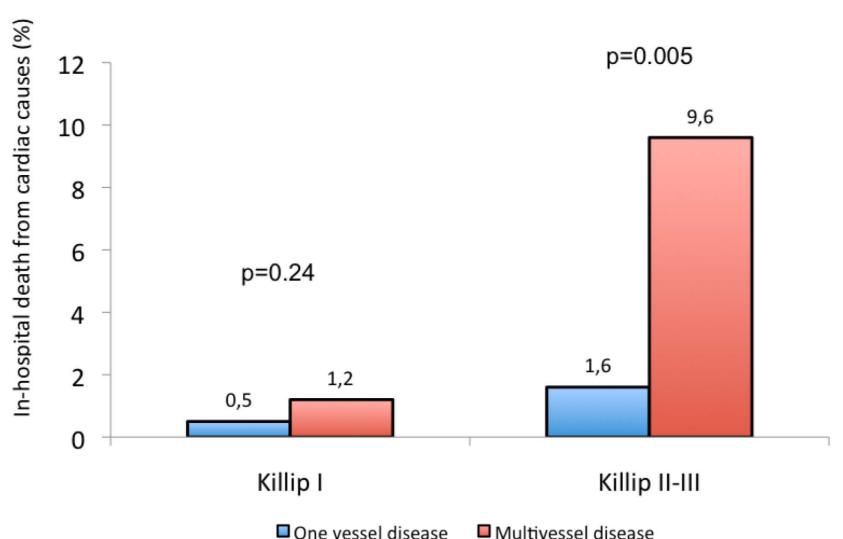

Current Evidence of Multivessel vs Culprit Lesion PCI in STEMI complicated with Cardiogenic Shock

Registry trial	n	Mortality Complete Revascularization	Mortality Incomplete Revascularization	Adjusted OR (95%CI)
Webb ⁸	74	55%*	20%*	2.75 (1.05-7.25)
Van der Schaaf ¹⁹	161	60%*	53%*	Not reported (p=0.05)
Cavender ¹⁸	3087	36.5%	27.8%	1.5 (1.22–1.95)
Bauer ¹⁷	336	48.8%	37.4%	1.28 (0.72-2.28)
Zeymer ²⁰	735	46.8%	35.6%	1.5 (1.1-2.3)
Mylotte ²⁸	169	56.1%†	79.6%†	Not reported (p=0.002)
Cavender ³¹	199	46%	27%	Not reported (p=0.04)
Hussain ²⁷	101	Not reported	Not reported	2.47 (1.14-6.21)
Park ²⁹	510	13.9%	17.9%	Not reported (p=0.18)
Yang ³⁰	338	35.0%	30.6%	1.16 (0.72-1.87)

The CULPRIT-SHOCK trial will address the question of optimal revascularization strategy in patients with multivessel disease and acute myocardial infarction complicated by cardiogenic shock

HUGTP Experience (2007-2013)

Patients with STEMI treated with Primary PCI and Multivessel Disease



	Killip 1	Killip 2-3	Р
	N=1 506	N=282	
Age, years	63±13	66±14	<0,0001
Females, n(%)	299(19.9)	78(27.7)	0,003
Hypertension, n(%)	751(49.9)	169(59.9)	0,001
Dyslipidemia, n(%)	771(51.2)	134(47.5)	0,14
Diabetes, n(%)	332(22.0)	92(32.6)	<0,0001
Smoking, n(%)	676(44.9)	112(39.7)	0,06
Kidney failure, n(%)	124(8.2)	61(21.6)	<0,0001
Peripheral vascular disease, n(%)	127(8.4)	49(17.4)	<0,0001
Previous infarction, n(%)	122(8.1)	43(15.2)	<0,0001
Previous PCI, n(%)	115(7.6)	36(12.8)	0,005
Multivessel disease, n(%)	694(46.1)	156(55.3)	0,003
Radial access, n(%)	1442(95.8)	269(95.4)	0,44
Thrombectomy, n(%)	1170(77.7)	213(75.5)	0,23
Anti IIb/IIIa, n(%)	1122(74.5)	193(68.4)	0,02
DTDT<120 min, n(%)	1010(67.1)	177(62.8)	0,17
Symptoms to reperfusion <120 min, n(%)	979(65.0)	171(60.6)	0,17

Impact of Heart Failure on Outcome in STEMI

HUGTP Experience (2007-2013)

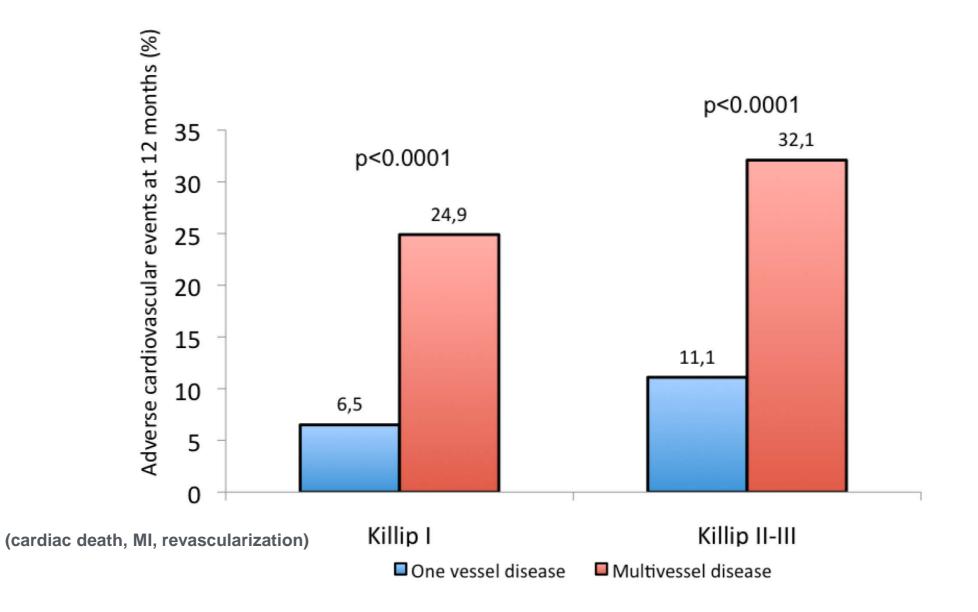
Patients with STEMI treated with Primary PCI and Multivessel Disease

In-Hospital Cardiac Death

Multivessel disease was associated with a 6-fold higher in-hospital cardiac mortality (1.6% vs. 9.6%; p=0.005)

HUGTP Experience (2007-2013)

Patients with STEMI treated with Primary PCI and Multivessel Disease

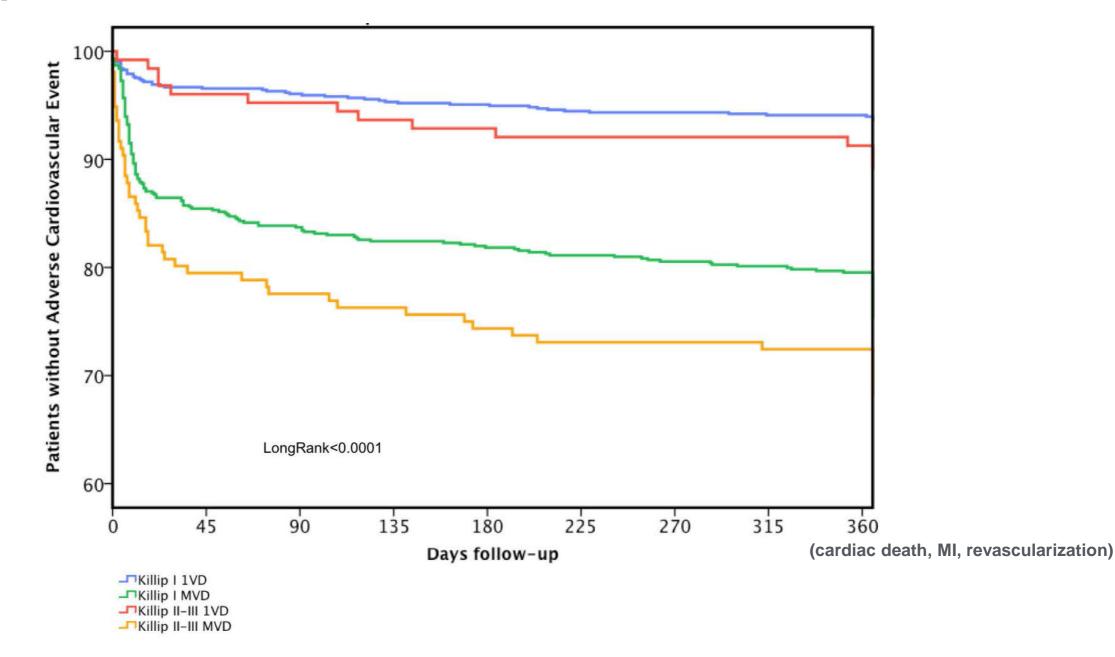

Multivariate Analysis of Cardiac Death During Admission in Patients with Multivessel Disease

	RR	Р
Age	1.11 (1.05-1.17)	< 0.0001
Renal failure	2.04 (0.88-4.70)	0.09
Use of anti-glycoprotein IIb/IIIa agents	0.32 (0.12-0.86)	0.024
Heart failure at admission (killip>1)	5.19 (2.35-11.41)	< 0.0001

In patients with multivessel disease, Killip II-III at admission was the strongest predictor of in-hospital cardiac mortality

HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease

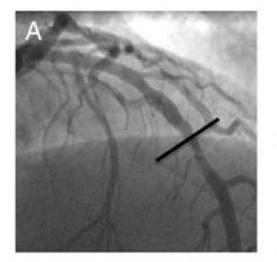
Adverse Cardiovascular Events at 12 months

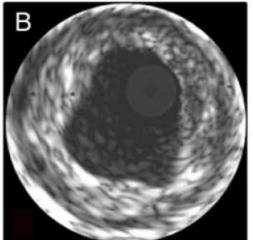


Multivessel disease was associated with a higher incidence of ACE in both groups

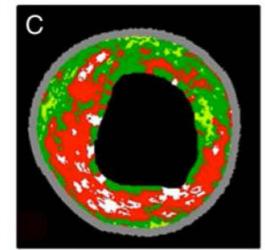
HUGTP Experience (2007-2013)

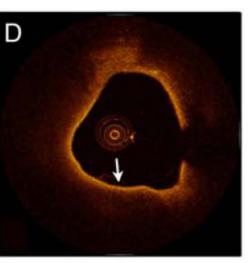
Patients with STEMI treated with Primary PCI and Multivessel Disease

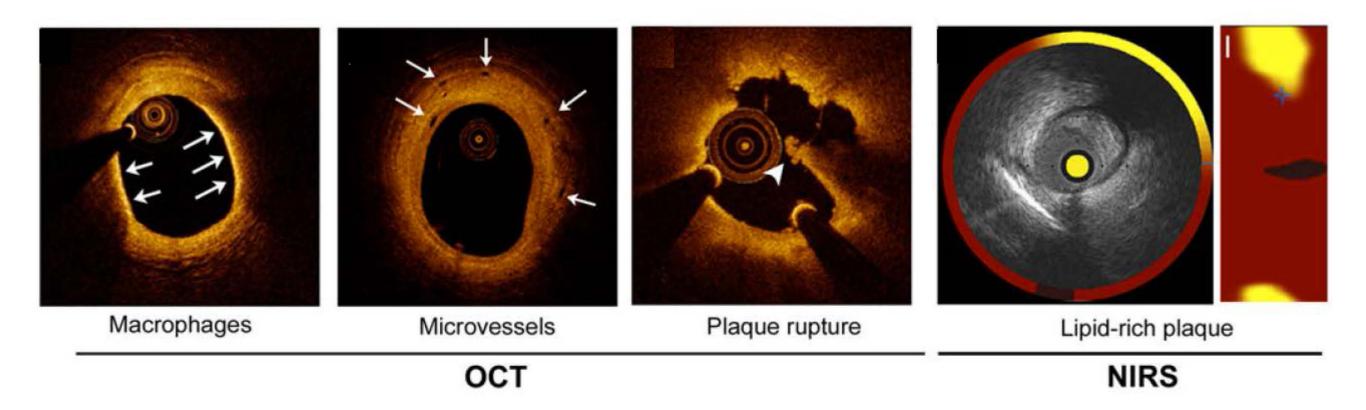

Kaplan-Meier Curves for Adverse Cardiovascular Events


Remarkably, single-vessel disease curves were associated with favorable outcomes and could be superimposed for Killip I and Killip II-III patients

Meta-Analysis of RCT Comparing Multivessel vs Culprit Only PCI


Multimodality imaging of a distal left anterior descending artery lesion by angiography


Lumen stenosis Angiography


Atheroma / Vessel wall IVUS

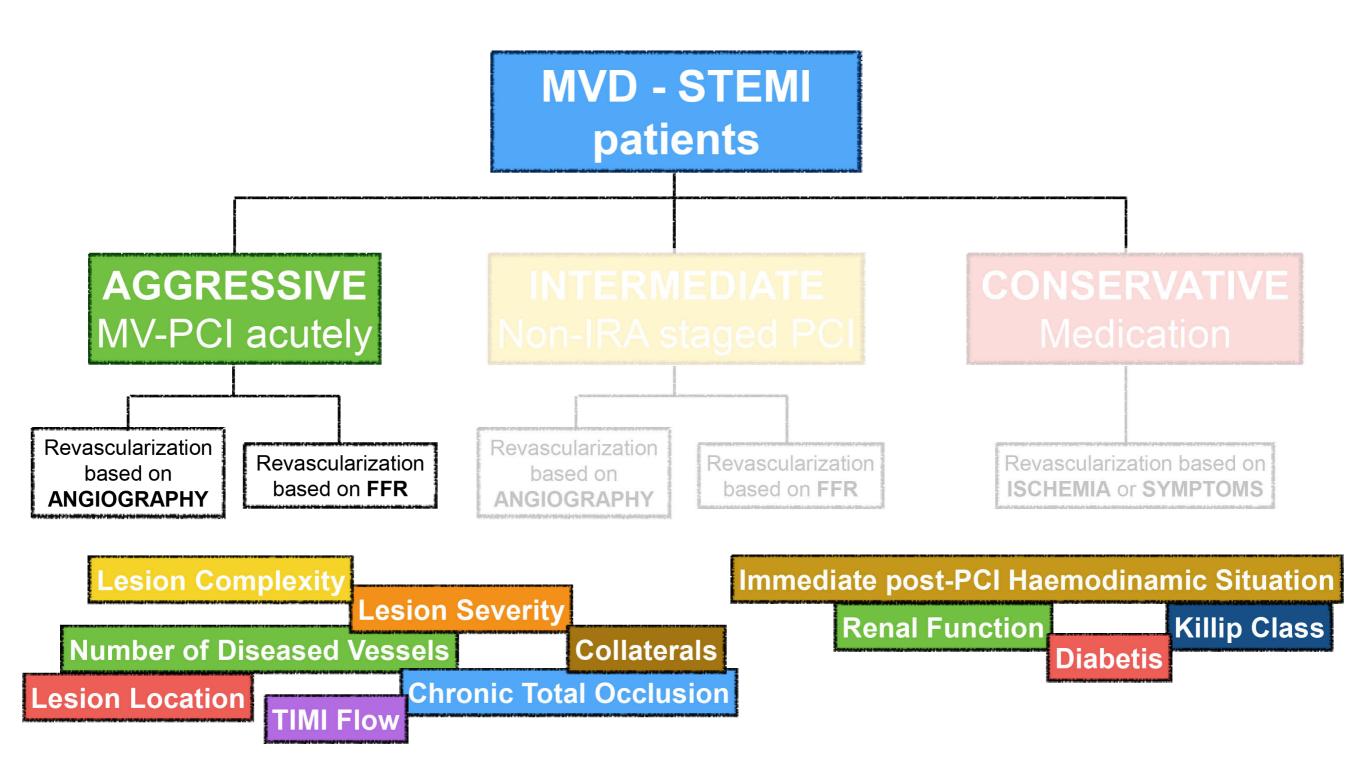
Plaque composition IVUS-VH

Thin fibrous cap

Koskinas KC et al. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J;2016;37:524-535

Meta-Analysis of RCT Comparing Multivessel vs Culprit Only PCI

Summary of the positive and negative predictive values of intracoronary imaging-derived variables for prediction of clinical outcomes


Study	Modality	Lesion characteristic(s)	Clinical endpoint	Positive predictive value	Negative predictive value
PROSPECT n=697	IVUS & IVUS-VH	PB ≥70% & MLA <4mm² & IVUS-VH TCHA	MACE	18%	98%
ATHEROREMO IVUS n=581	IVUS & IVUS-VH	PB ≥70% & MLA <4mm² & IVUS-VH TCHA	MACE	23%	93%
PREDICTION n=506	IVUS & ESS	PB <u>≥</u> 58% & Low ESS <1.0 Pa	PCI	41%	92%
ATHEROREMO NIRS n=203		LCBI4mm >43	MACE	12%	99%

These methodologies have established a link between in vivo plaque characteristics and subsequent coronary events, thereby improving individual risk stratification, paving the way for risk-tailored systemic therapies and raising the option for pre-emptive interventions

Koskinas KC et al. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J;2016;37:524-535

Treatment Strategies in Patients with STEMI and Multivessel Disease

There are about 60 possible scenarios based on combinations of angiographic and clinical findings in individual patients

Multivessel disease should be recognized as a major adverse prognostic factor in patients with STEMI

Multivessel disease in STEMI is not a single entity and thus the treatment approach should be individualized

Randomized controlled trials (PRAMI, CvLPRIT, DANAMI-3 PRIMULTI, COMPARE ACUTE) showed that preventive PCI is safe and improves outcomes mainly driven by the need of repeat revascularization

Patients who are asymptomatic and have negative functional tests and no evidence for silent ischaemia after their first STEMI should currently be treated conservatively

Future studies should clarify whether complete revascularization should be done acutely during the index procedure or at later time and whether it has an effect on hard endpoints

The every day real-life clinical practice brings much more different clinical scenarios. It is unlikely that any randomized clinical trial in the future can be able to fully address this complexity and thus, **experienced**, **wise clinical judgement will probably remain the most important factor in this difficult situation**

IAM EN MALALTIA MULTIVÀS TRACTAR-HO TOT O NO AGUT O DIFERIT

TRACTAR ALTRES LESIONS QUE LA RESPONSABLE EN LA FASE AGUDA APORTA AVANTATGES

- PART II -

Oriol Rodríguez Leor Institut del Cor Germans Trias i Pujol Badalona iCor INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL

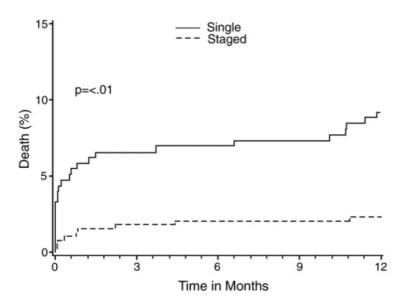
germanstriashospital

2014 ESC Myocardial Revascularization Guidelines

Recommendations	Class ^a	Level ^b	Ref ^c
Strategy			
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.	lla	в	234,264–266
Staged revascularization of non-culprit lesions should be considered in STEMI patients with multivessel disease in case of symptoms or ischaemia within days to weeks after primary PCI.	lla	в	235
Immediate revascularization of significant non-culprit lesions during the same procedure as primary PCI of the culprit vessel may be considered in selected patients.	ΙЬ	в	267
In patients with continuing ischaemia and in whom PCI of the infarct-related artery cannot be performed, CABG should be considered.	lla	с	

Windecker S et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2014;35:2541-2619

X


2014 EHJ Revascularization Guidelines

HORIZONS AMI Trial

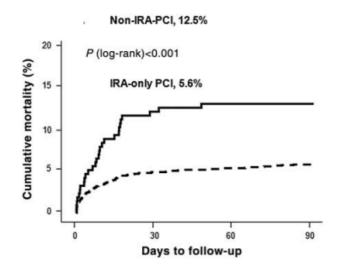
668 of the 3602 STEMI patients enrolled (18.5%) underwent PCI of culprit and nonculprit lesions for multivessel disease

Patients were categorized into a single PCI strategy (n=275) versus staged PCI (n=393)

CONCLUSION: a deferred angioplasty strategy of nonculprit lesions should remain the standard approach in patients with STEMI undergoing primary PCI, as multivessel PCI may be associated with a greater hazard for mortality and stent thrombosis

- Retrospective nonrandomized subanalysis
- Specific reason why operator chose a single procedure vs a staged approach was not prospectively collected
- Low number of events (31 deaths / 25 cardiac deaths/19 stent thrombosis) -> Multivariate Model Underpowered
 - BMS vs Taxus Express

Kornowski R et al. Prognostic impact of staged vs "ontime" multivessel PCI in acute myocardial infarction. Analysis from the HORIZONS-AMI Trial. J Am Coll Cardiol 2011; 58:704-711


2014 EHJ Revascularization Guidelines

APEX AMI Trial

2201 of the 5373 STEMI patients enrolled (18.5%) underwent PCI of culprit and nonculprit lesions for multivessel disease

Patients were categorized into a single PCI strategy (n =217) versus no PCI (n =1984)

CONCLUSION: Non-culprit coronary interventions were performed at the time of primary PCI in 10% of MVD patients and were significantly associated with increased mortality. Our data support current guideline recommendations discouraging the performance of such procedures in stable primary PCI patients.

- Retrospective nonrandomized subanalysis
- Specific reason why operator chose a single procedure vs a staged approach was not prospectively collected
- Low number of events (135 deaths)-> Multivariate Model Underpowered
- Only 38% DES (1st generation)
- Lack of information on outcomes in patients not treated at the index procedure

Toma M et al. Non-culprit coronary artery percutaneous coronary intervention during acute ST-segment elevation myocardial infarction: insights from the APEX-AMI trial. Eur Heart J. 2010;31:1701-7

2014 EHJ Revascularization Guidelines

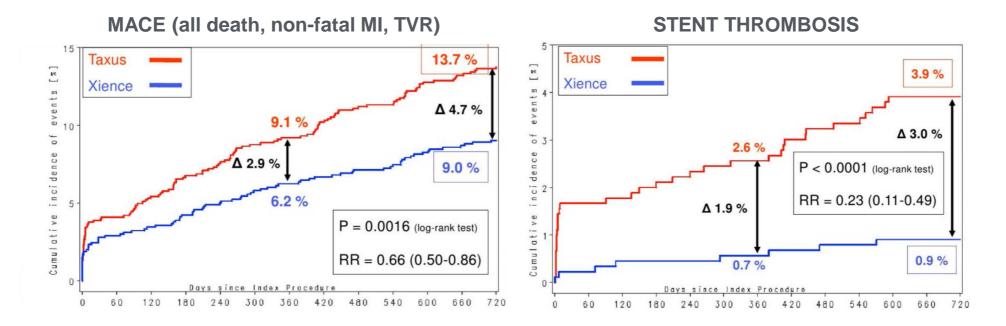
Hannan et al, JACC Intv

New York State Registry (3521 patients) 2003-2006

CONCLUSION: Our findings support the ACC/AHA recommendation that culprit vessel PCI be used for STEMI patients with multivessel disease at the time of the index PCI when patients are not hemodynamically compromised. However, staged PCI within 60 days after the index procedure, including during the index admission, is associated with risk-adjusted mortality rates that are comparable with the rate for culprit vessel PCI alone.

Outcome by Subgroup	Culprit Vessel Revascularization at the Time of PPCI	Multivessel Revascularization at the Time of PPCI	Percentage Difference	p Val
All patients	n = 503	n = 503		
Death, %				
In-hospital	2.0	3.4	1.4	0.14
12 months	5.5	7.1	1.6	0.2
24 months	6.6	8.6	2.0	0.1
42 months	10.8	11.8	1.0	0.2
atients without hemodynamic instability, LVEF <20%, malignant ventricular arrhythmia	n = 458	n = 458		
Death, %				
In-hospital	0.9	2.4	1.5	0.0
12 months	4.2	5.8	1.6	0.1
24 months	4.9	7.2	2.3	0.0
42 months	6.7	10.4	3.7	0.0

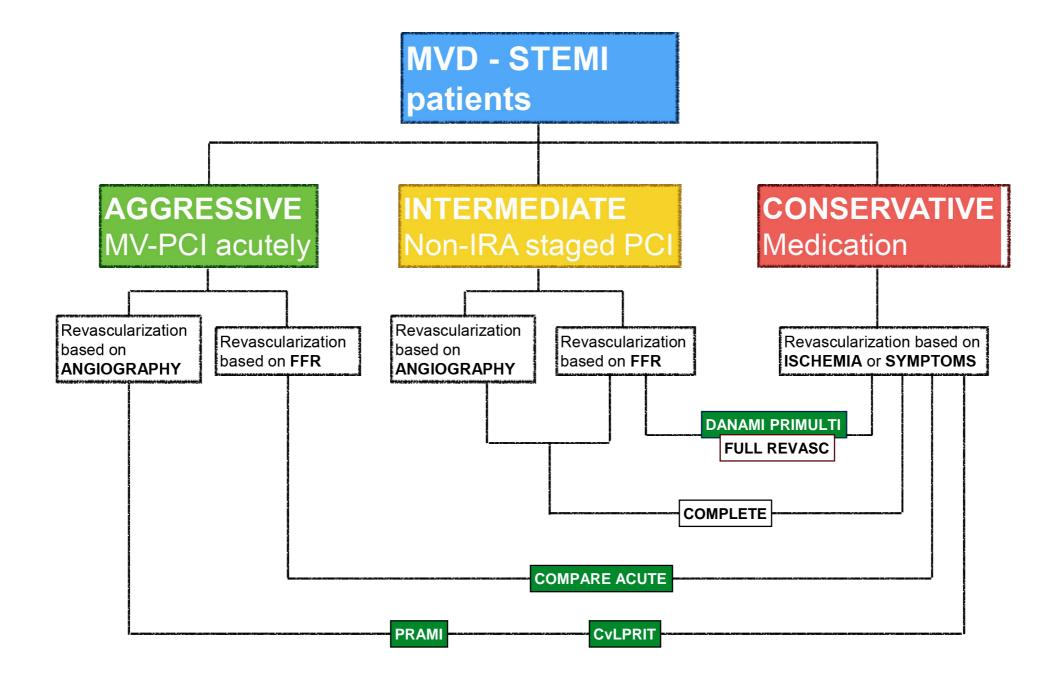
- Observational study (selection bias)
- No information about medical treatment
- No information about DES use, but 1st generation
- Very low In-hospital mortality in the culprit-only group (0,9%!!)


Hannan EL et al. Culprit vessel PCI vs multivessel and staged PCI for STEMI in patients with multivessel disease . J Am Coll Cardiol Intv 2010;3:22-31

Randomized Trials of Multivessel PCI in STEMI

First Generation vs Contemporary DES

COMPARE Trial


2-Year Follow-Up of a Randomized Controlled Trial of Everolimus- and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice

The substantial clinical benefit of the EES over the PES with regard to measures of both safety and efficacy is maintained at 2 years in real-life practice with an increasing benefit in terms of safety and efficacy between 1 year and 2 years

Smits PC et al. 2-Year Follow-Up of a Randomized Controlled Trial of Everolimus- and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice. J Am Coll Cardiol 2011; 58:11–8

Treatment Strategies in Patients with STEMI and Multivessel Disease

iCor INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL

Meta-Analysis of RCT Comparing Multivessel vs Culprit Only PCI

Risk of Major Bleeding in Follow-up

	Multi-vesse	el PCI	COF	2		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Culprit	4	150	7	146	54.0%	0.56 [0.17, 1.86]	
PRAMI	7	234	6	231	46.0%	1.15 [0.39, 3.38]	
Total (95% CI)		384		377	100.0%	0.83 [0.38, 1.83]	-
Total events	11		13				
Heterogeneity: Chi ² =	0.78, df = 1 (P = 0.38	i); I² = 0%				0.01 0.1 1 10 100
Test for overall effect	Z=0.46 (P=	0.64)				Fav	ours Multi-vessel PCI Favours COR

Risk of Contrast-Induced Nephropaty in Follow-up

	Multi-vesse	el PCI	COF	2		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Culprit	2	150	2	146	26.4%	0.97 [0.14, 6.82]	
Politi	1	65	3	84	34.2%	0.43 [0.05, 4.05]	
PRAMI	1	234	3	231	39.4%	0.33 [0.03, 3.14]	
Total (95% CI)		449		461	100.0%	0.53 [0.16, 1.77]	-
Total events	4		8				
Heterogeneity: Chi ² =	0.58, df = 2 (P = 0.75	j); l² = 0%				0.01 0.1 1 10 100
Test for overall effect	Z=1.02 (P=	0.31)				Favo	ours Multi-vessel PCI Favours COR

El-Hayek GE et al. Meta-analysis of randomized controlled trials comparing multi-vessel vs culprit only revascularization for patients with STEMI and multivessel disease. Am J Cardiol;2015;115:1481

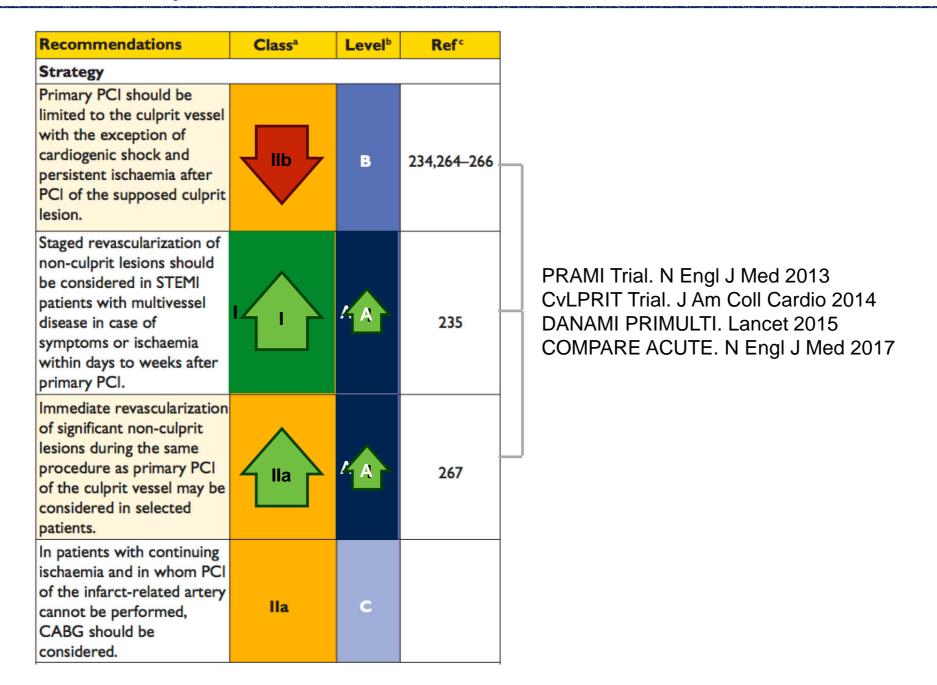
Meta-Analysis of RCT and nonRCT Comparing Multivessel vs Culprit Only PCI

Long Term Mortality Stratified by Study Method

	Multi-Vess	el PCI	Culprit-Or	nly PCI		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.15.1 Randomized							
Dambrink 2010	2	80	0	41	0.1%	2.64 [0.12, 56.35]	
Di Mario 2004	1	52	0	41	0.1%	2.42 [0.10, 60.91]	
Politi 2009	10	130	13	84	2.8%	0.46 [0.19, 1.09]	
Subtotal (95% CI)		262		166	3.0%	0.61 [0.28, 1.33]	-
Total events	13		13				
Heterogeneity: Chi ² = 2.01	1, df = 2 (P =	.37); 12=	1%				
Test for overall effect: Z =	1.24 (P = .22	2)					
1.15.2 Non-Randomized							
Barringhaus2010	2	252	30	956	2.4%	0.25 [0.06, 1.04]	
Chen 2010	13	210	66	351	8.9%	0.28 [0.15, 0.53]	
Corpus 2004	17	152	42	354	4.3%	0.94 [0.51, 1.70]	
Dziewierz 2010	11	70	57	707	1.7%	2.13 [1.06, 4.27]	
Esteves-Loureiro 2010	1	59	25	208	2.1%	0.13 [0.02, 0.95]	
Han 2008	3	93	4	148	0.6%	1.20 [0.26, 5.49]	
Hannan 2010	105	1300	116	1300	20.6%	0.90 [0.68, 1.18]	-
Hudzik 2009	32	457	265	1642	20.7%	0.39 [0.27, 0.57]	
Jin 2007	7	215	19	901	1.4%	1.56 [0.65, 3.77]	
Kalarus 2007	14	193	112	605	9.7%	0.34 [0.19, 0.62]	
Khattab 2008	2	25	3	45	0.4%	1.22 [0.19, 7.82]	
Mohamad 2009	4	19	3	30	0.4%	2.40 [0.47, 12.18]	
Qarawani 2008	9	95	2	25	0.6%	1.20 [0.24, 5.96]	
Rahman 2010	51	578	122	1449	12.2%	1.05 [0.75, 1.48]	+
Rigattieri 2008	1	64	7	46	1.5%	0.09 [0.01, 0.75]	· · · · · · · · · · · · · · · · · · ·
Roe 2001	17	25	10	61	0.4%	10.84 [3.68, 31.90]	
Seo 2009	4	82	45	217	4.5%	0.20 [0.07, 0.56]	
Telayna 2002	0	17	16	96	1.0%	0.14 [0.01, 2.44]	· · · · · · · · · · · · · · · · · · ·
Toma 2010	27	217	111	1984	3.7%	2.40 [1.53, 3.75]	
Subtotal (95% CI)		4123		11125	97.0%	0.75 [0.65, 0.86]	•
Fotal events	320		1055				
Heterogeneity: Chi ² = 113			$(01); ^2 = 84$	%			
Test for overall effect: Z =	4.18 (P < .00	101)					
fotal (95% CI)		4385		11291	100.0%	0.74 [0.65, 0.85]	•
Fotal events	333		1068				
Heterogeneity: Chi ² = 116	6.40, df = 21 ((P < .000	01); I ^z = 82	%			0.01 0.1 1 10 10
Test for overall effect: Z =	4.32 (P < .00	01)					Favours Multi-Vessel PCI Favours Culprit-Only PCI
Test for subgroup differer	nces: Chi ² = I	0.25, df=	= 1 (P = .62)), I ² = 0%			rate and the sector of the source output only the

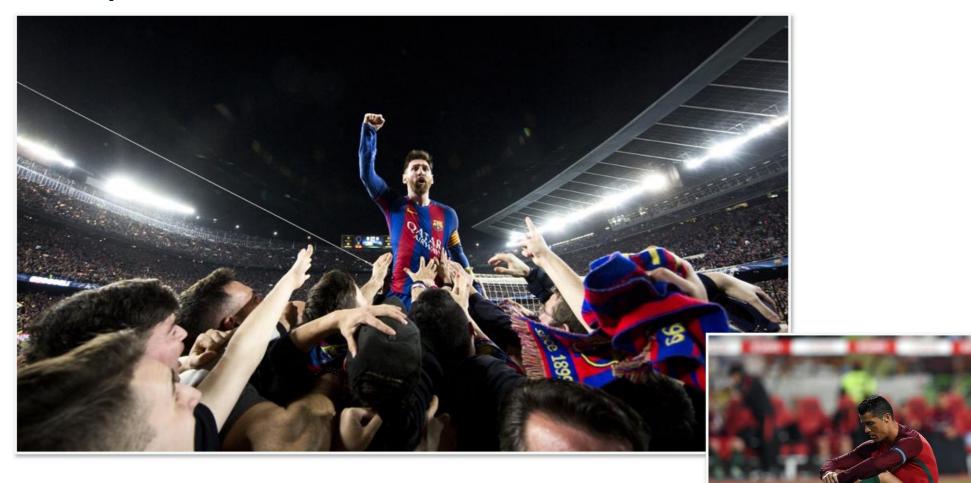
Multivessel PCI asociated with lower long term mortality OR 0,74 (0,65-0,85) p<0,001

Bainey KR et al. Complete vs culprit-only revascularization for patients with MVD undergoing primary PCI for STEMI: a systematic review and meta-analysis. Am Heart J;2014;167:1-14


2014 ESC Myocardial Revascularization Guidelines

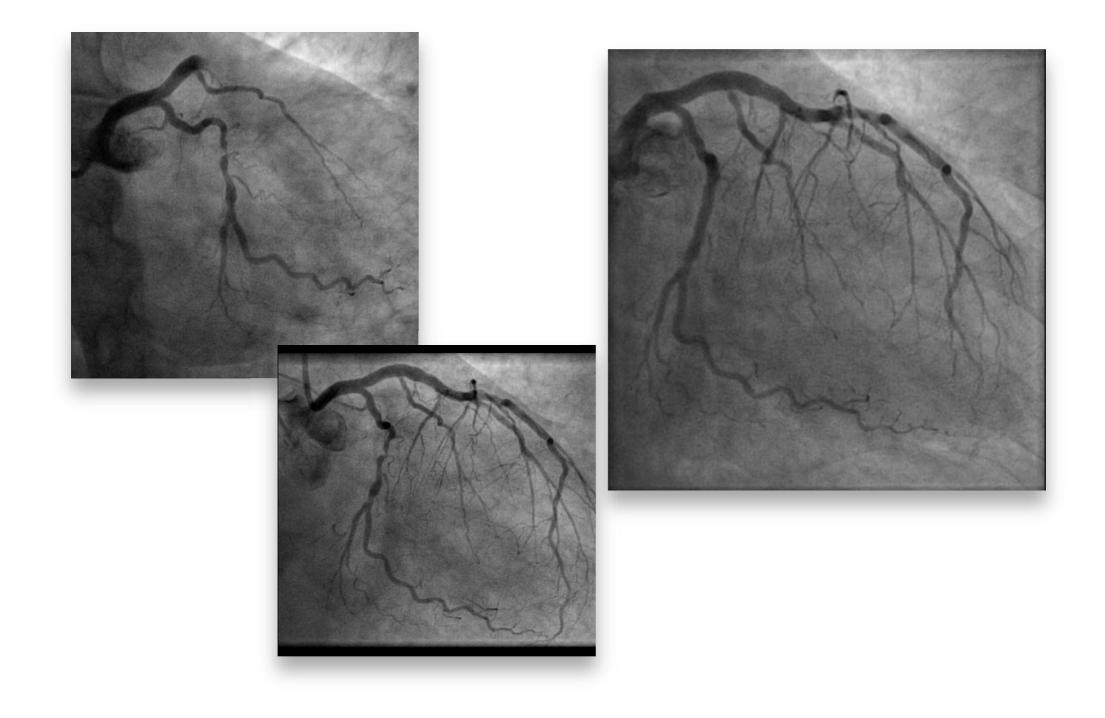
Recommendations	Class ^a	Level ^b	Ref ^c
Strategy			
Primary PCI should be limited to the culprit vessel with the exception of cardiogenic shock and persistent ischaemia after PCI of the supposed culprit lesion.	lla	в	234,264–266
Staged revascularization of non-culprit lesions should be considered in STEMI patients with multivessel disease in case of symptoms or ischaemia within days to weeks after primary PCI.	lla	в	235
Immediate revascularization of significant non-culprit lesions during the same procedure as primary PCI of the culprit vessel may be considered in selected patients.	ΙЬ	в	267
In patients with continuing ischaemia and in whom PCI of the infarct-related artery cannot be performed, CABG should be considered.	lla	с	

Windecker S et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2014;35:2541-2619

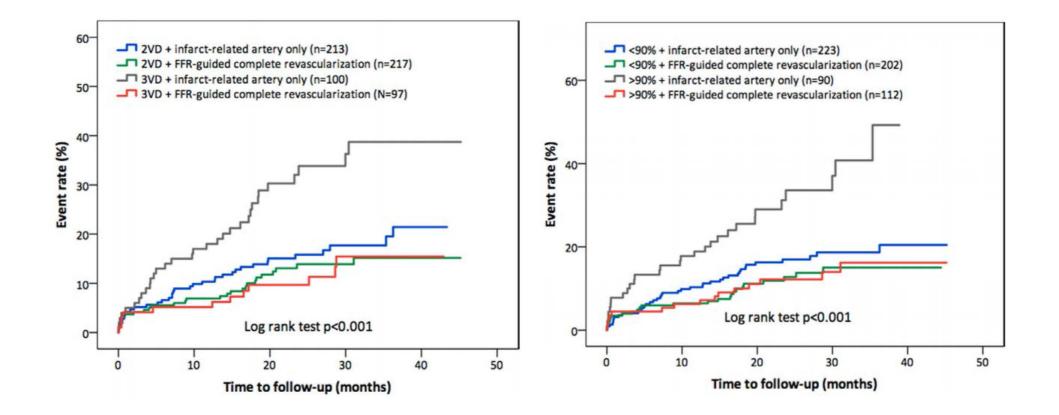

X

2017 SCC Myocardial Revascularization Guidelines?

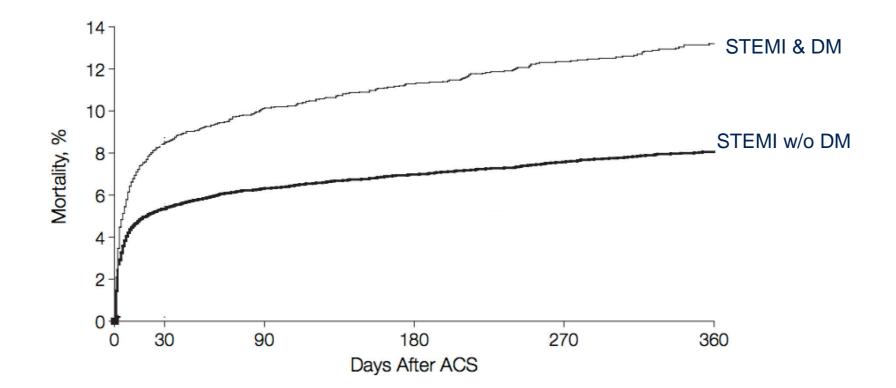
ICOT INSTITUT DEL COR DEL GERMANS TRIAS I PUJOL


Multivessel revascularization seems the best option in patients with STEMI...

...but should we do it during the index procedure? (acute multivessel PCI)



Multivessel PCI during the Index Procedure


Impact of the Disease Severity on Outcome

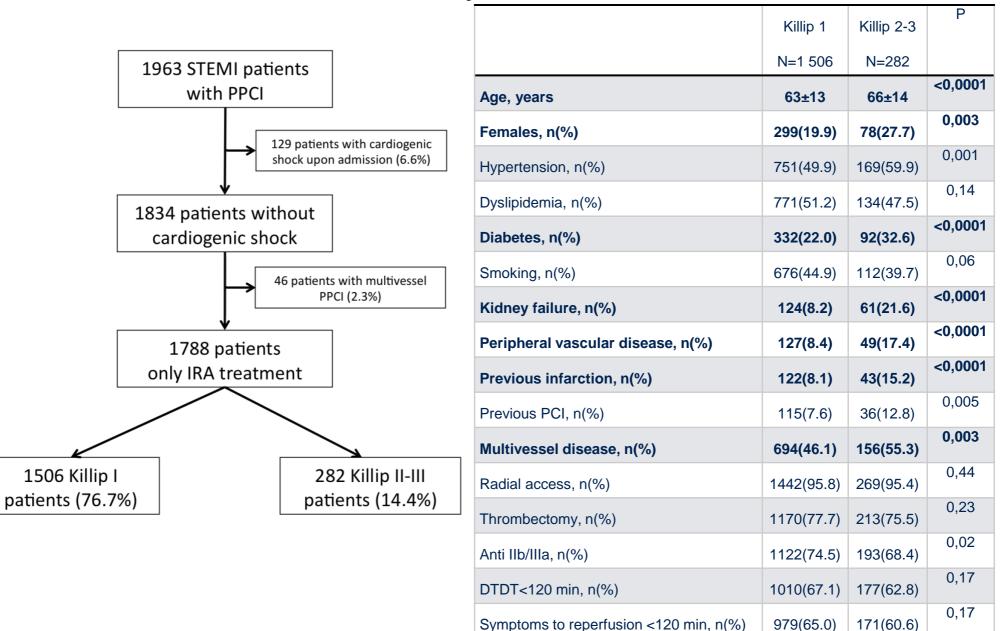
The benefit from FFR-guided complete revascularization was dependent in the presence of 3-vessel disease and noninfarct diameter stenosis >90% (particularly pronounced in patients with both these angiographic characteristics)

Lønborg J et al. FFR-guided complete revascularization improves the prognosis of patients with STEMI and severe nonculprit disease. A DANAMI 3 PRIMULTI substudy. Circ Cardiovasc Interv 201710:e004460

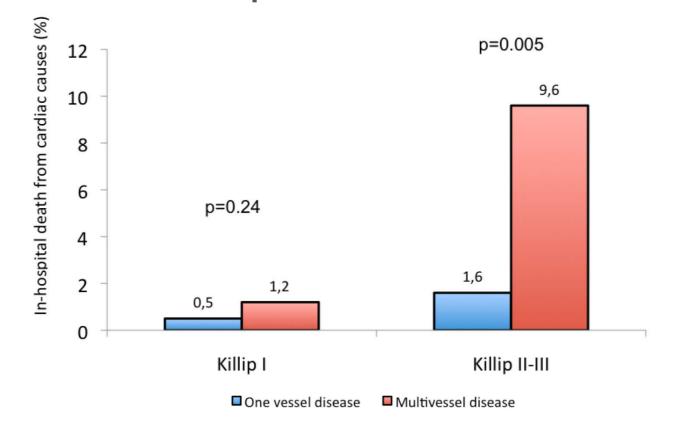
Diabetes confers a significant adverse prognosis, which highlights the importance of aggressive strategies to manage this high-risk population

Diabetes at presentation was associated with significantly higher mortality 1 year after STEMI (HR, 1.22; 95% CI, 1.08- 1.38)

Donahoe SM et al. Diabetes and Mortality Following Acute Coronary Syndromes. JAMA 2007;298:765-775


Current Evidence of Multivessel vs Culprit Lesion PCI in STEMI complicated with Cardiogenic Shock

Registry trial	n	Mortality Complete Revascularization	Mortality Incomplete Revascularization	Adjusted OR (95%CI)
Webb ⁸	74	55%*	20%*	2.75 (1.05-7.25)
Van der Schaaf ¹⁹	161	60%*	53%*	Not reported (p=0.05)
Cavender ¹⁸	3087	36.5%	27.8%	1.5 (1.22–1.95)
Bauer ¹⁷	336	48.8%	37.4%	1.28 (0.72–2.28)
Zeymer ²⁰	735	46.8%	35.6%	1.5 (1.1-2.3)
Mylotte ²⁸	169	56.1%†	79.6%†	Not reported (p=0.002)
Cavender ³¹	199	46%	27%	Not reported (p=0.04)
Hussain ²⁷	101	Not reported	Not reported	2.47 (1.14-6.21)
Park ²⁹	510	13.9%	17.9%	Not reported (p=0.18)
Yang ³⁰	338	35.0%	30.6%	1.16 (0.72-1.87)


The CULPRIT-SHOCK trial will address the question of optimal revascularization strategy in patients with multivessel disease and acute myocardial infarction complicated by cardiogenic shock

Thiele H et al. Multivessel versus culprit lesion only PCI plus potential staged revascularization in patients with STEMI complicated by cardiogenic shock: Design and rationale of CULPRIT-SHOCK trial. Am Heart J;2016;172:160-169

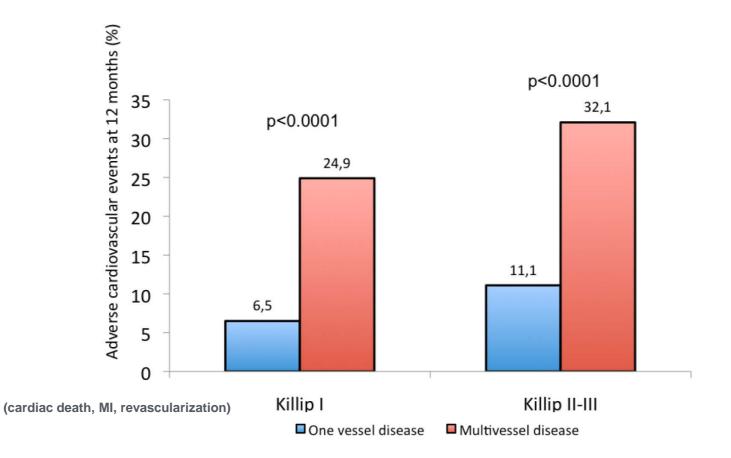
HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease

HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease

In-Hospital Cardiac Death

Multivessel disease was associated with a 6-fold higher in-hospital cardiac mortality (1.6% vs. 9.6%; p=0.005)

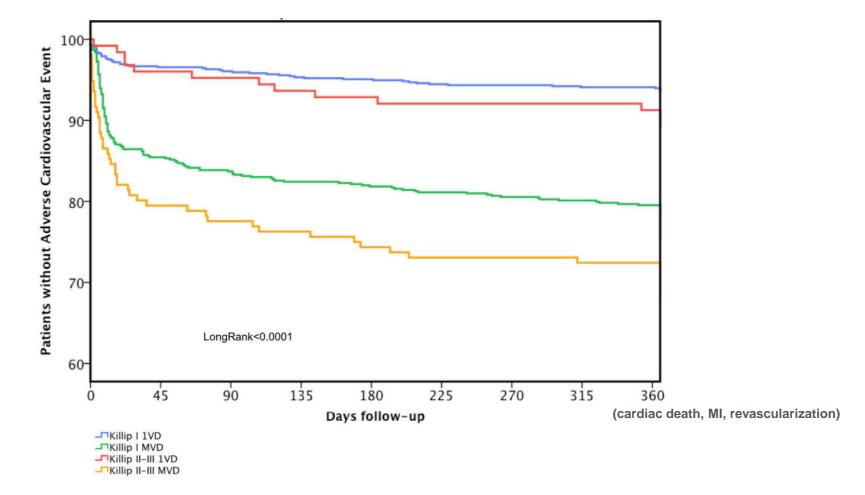
HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease


Multivariate Analysis of Cardiac Death During Admission in Patients with Multivessel Disease

	RR	Р
Age	1.11 (1.05-1.17)	< 0.0001
Renal failure	2.04 (0.88-4.70)	0.09
Use of anti-glycoprotein IIb/IIIa agents	0.32 (0.12-0.86)	0.024
Heart failure at admission (killip>1)	5.19 (2.35-11.41)	< 0.0001

In patients with multivessel disease, Killip II-III at admission was the strongest predictor of in-hospital cardiac mortality

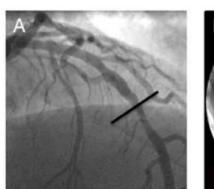
HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease


Adverse Cardiovascular Events at 12 months

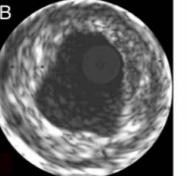
Multivessel disease was associated with a higher incidence of ACE in both groups

HUGTP Experience (2007-2013) Patients with STEMI treated with Primary PCI and Multivessel Disease

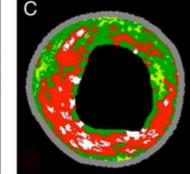
Kaplan-Meier Curves for Adverse Cardiovascular Events

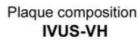


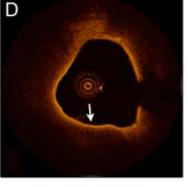
Remarkably, single-vessel disease curves were associated with favorable outcomes and could be superimposed for Killip I and Killip II-III patients

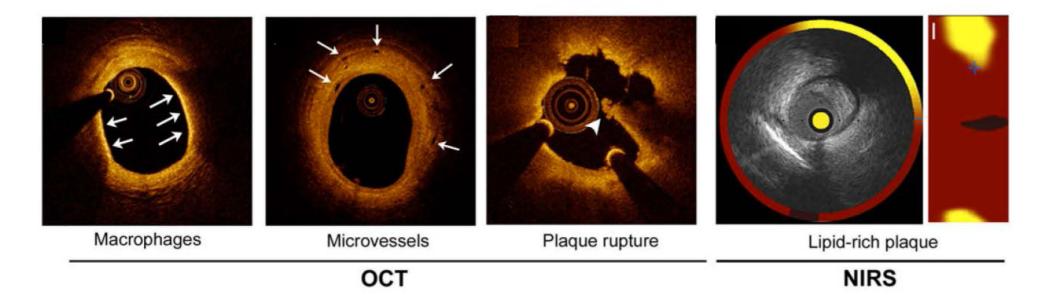

iCor Institut del cor del germans trias i pujol

Meta-Analysis of RCT Comparing Multivessel vs Culprit Only PCI


Multimodality imaging of a distal left anterior descending artery lesion by angiography




Lumen stenosis Angiography

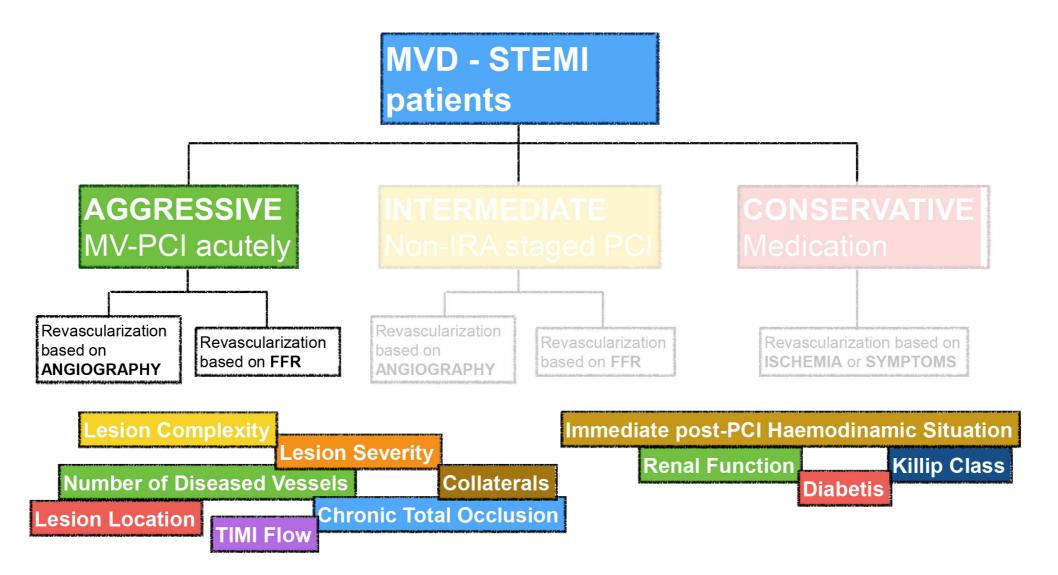

Atheroma / Vessel wall IVUS

Thin fibrous cap OCT

Koskinas KC et al. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J;2016;37:524-535

Meta-Analysis of RCT Comparing Multivessel vs Culprit Only PCI

Summary of the positive and negative predictive values of intracoronary imaging–derived variables for prediction of clinical outcomes


Study	Modality	Lesion characteristic(s)	Clinical endpoint	Positive predictive value	Negative predictive value
PROSPECT n=697	IVUS & IVUS-VH	PB ≥70% & MLA <4mm² & IVUS-VH TCHA	MACE	18%	98%
ATHEROREMO IVUS n=581	IVUS & IVUS-VH	PB <u>></u> 70% & MLA <4mm² & IVUS-VH TCHA	MACE	23%	93%
PREDICTION n=506	ESS	PB <u>></u> 58% & Low ESS <1.0 Pa	PCI	41%	92%
ATHEROREMO NIRS n=203	NIRS	LCBl4mm >43	MACE	12%	99%

These methodologies have established a link between in vivo plaque characteristics and subsequent coronary events, thereby improving individual risk stratification, paving the way for risk-tailored systemic therapies and raising the option for pre-emptive interventions

Koskinas KC et al. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J;2016;37:524-535

Treatment Strategies in Patients with STEMI and Multivessel Disease

There are about 60 possible scenarios based on combinations of angiographic and clinical findings in individual patients

Conclussions

Multivessel disease should be recognized as a major adverse prognostic factor in patients with STEMI

Multivessel disease in STEMI is not a single entity and thus the treatment approach should be individualized

Randomized controlled trials (PRAMI, CvLPRIT, DANAMI-3 PRIMULTI, COMPARE ACUTE) showed that preventive PCI is safe and improves outcomes mainly driven by the need of repeat revascularization

Patients who are asymptomatic and have negative functional tests and no evidence for silent ischaemia after their first STEMI should currently be treated conservatively

Future studies should clarify whether complete revascularization should be done acutely during the index procedure or at later time and whether it has an effect on hard endpoints

The every day real-life clinical practice brings much more different clinical scenarios. It is unlikely that any randomized clinical trial in the future can be able to fully address this complexity and thus, **experienced**, **wise clinical judgement will probably remain the most important factor in this difficult situation**

