CLINICAL RESULTS WITH IMMUNOTHERAPY STRATEGIES

Paula Rodríguez Otero University of Navarra

Is there a role for immunotherapy strategies in MM?

Maybe YES

The Microenvironment & Immunosurveillance in MM

Impaired induction of allogeneic T-cell responses:

Reduced CD4+ T cell numbers. Abnormal Th1/Th2 cytokine profile. Impaired cytotoxic T cell response **Reduced B cell numbers:** Impaired B cell differentiation and Ab response.

¹Thomas DA, et al. Cancer Cell 2005; 8(5): 369-380; ²Sze DM et al. Blood. 2001; 98(9):2817-27.³Brown RD et al. Leuk Lymphoma. 1998; 31(3-4):379-84.⁴Benson DM et al. Blood. 2010; 116(13):2286-94. ⁵Paiva B et al. Leukemia 2015. 29(10):2110-13. ⁶Pessoa de Magalhães RJ, et al. *Haematologica*. 2013;98(1):79-86

Therapeutic immunomodulation to delay the progression to active multiple myeloma: Lessons from QUIREDEX trial

Immunophenotypic expression profiling (IEP)

- High risk SMM: decrease expression of activation, Th1 and proliferation related markers.
- IMID treatment restored this expression and induced shift in Tcell ad NK cell phenotype:
 >central memory Tcells & effector memory Tcells ; >expression of activation markers;
 >number of proliferating CD4 and CD8 T cells after treatment

Paiva B, et al. Blood. 2015

Long-term MM survivors have unique immune changes suggesting *improve immune surveillance*

- Higher CD8+ effector cells
- Higher NK cells
- Higher B cells
- Higher normal PCs
- Higher dendritic cells
- Lower Tregs

Improve immune surveillance

Pessoa de Magalhães RJ, et al. Haematologica. 2013;98(1):79-86.

Prognostic value of immune profiling during MRD monitoring

Immune signatures derived from Flow-MRD using a single 8-color MoAb combination

Recovery of B cells and neutrophils production.....good prognosis

Arana P, et al. Blood 2015 126:721

Identification of MRD+ve patients with favorable immune profile and superior outcome

Multivariate analysis based on the distribution of 15 immune cell populations (including normal and clonal PCs) in the BM at the time of MRD assessment

Arana P, et al. Blood 2015 126:721

Four major targets for cancer immunotherapy

Direct targeting of surface tumor antigens

Monoclonal antibodies

Boosting immune effectors:

IMMUNOTHERAPY

PASSIVE

Adoptive cell therapy

Activating tumor specific immunity:

Vaccins

ACTIVE MMUNOTHERAPY

Overcoming inhibitory immune supression:

Immunomodulators: IMIDs, Checkpoint inh

Surface antigens in clonal plasma cells

Monoclonal antibodies in Multiple Myeloma

¹Lonial S, et al. NEJM 2015. ²Zonder, Blood 2012. ³Lonial, ASCO 2013. Abstract 854. ⁴Lokhorst HM et al. NEJM, 363:8, 2015. ⁵Sagar Lonial, ASCO 2015, abstract 8512. ⁶Martin et al. ASCO 2014; Abstract 8532

Eotuzumab (SLAMF7:Signaling Lymphocytic Activation Molecule F7: Anti-CS1)

Eloquent-2 (Elo-Ld vs Ld): Extended PFS and TNT

27% reduction in the risk of disease progression or death Relative improvement in PFS of 44% at 3 years

Anti CD38 antibodies: Mechanisms of Action

Anti CD38 in MM: single agent activity in RRMM

	Daratumumab	Isatuximab
Study details	3 studies: GEN501 ¹ , SIRIUS ² & combined analysis ⁴	First in-human, phase 1 dose escalation ³
Patients	Pts with rel/ref MM n=148 (SIRIUS n=42 and GEN501 n=106)	Pts with rel/ref MM N=97
Dose	16 mg/kg	Dose is not yet defined
Results	 ORR 31% (36% GEN501 & 29% SIRIUS) Median DOR: 7.6 m 1 year OS: 77% / 69% Median PFS: 5.6m , 3.7 m, Infusion-related reactions gr 1-2 	 At ≥ 10 mg/kg: 24% Abnormal CA: 44% Median DOR: 6.6 m IARs: 49%, mostly grade ≤2, 94% during 1st infusion.

Dara/SAAR are CD38 MoAB showing activity as single agents in RRMM patients

¹Lokhorst HM et al, NEJM 2015, 363:8; ¹Lokhorst et al. ASCO 2014; Abstract 8513; Lonial S JCO 2015, ³Martin et al. ASCO 2014; Abstract 8532; ⁴Usmani S, et al ASH 2015 abstract 29, ⁵Martin T, ASH 2015 abstract 509; Richter JR, et al. ASCO 2016; J Clin Oncol 34, 2016 (suppl; abstr 8005)

COMBINED ANALYSIS: Refractory status

		16 mg/kg	
Refractory to, n (%)	GEN501, Part 2 n = 42	SIRIUS n = 106	Combined N = 148
Last line of therapy	32 (76)	103 (97)	135 (91)
Both PI and IMiD PI only IMiD only	27 (64) 3 (7) 4 (10)	101 (95) 3 (3) 1 (1)	128 (86) 6 (4) 5 (3)
PI + IMiD + alkylating agent	21 (50)	79 (75)	100 (68)
Bortezomib	30 (71)	95 (90)	125 (84)
Carfilzomib	7 (17)	51 (48)	58 (39)
Lenalidomide	31 (74)	93 (88)	124 (84)
Pomalidomide	15 (36)	67 (63)	82 (55)
Thalidomide	12 (29)	29 (27)	41 (28)
Alkylating agent only	25 (60)	82 (77)	107 (72)

GEN502/SIRIUS: Overall response

- ORR = 31%
- ORR was consistent in subgroups including age, number of prior lines of therapy, refractory status, or renal function

GEN502/SIRIUS: Depth and DOR

- In many patients, responses deepened with continued DARA treatment
- Median DOR = 7.6 (95% CI, 5.6-NE) months
- At a median follow-up of 14.8 m, 50% (95% CI, 33.6-63.9) of responders were progression-free at 12m

Combined analysis:

Two studies: GEN501 & SIRIUS – PFS and OS analysis

- For the combined analysis, median OS = 20.5 months (95%IC, 16.6 28.1m)
- 1-year overall survival rate = 69% (95% CI, 60.4-75.6)

Progression-free survival

Usmani S, et al. Blood 2016. Usmani et al. ASH 2017. Poster presentation. #3107

Overall Survival

Outcome in patients refractory to novel agents

Evolution of MM OS over the years

Outcome of pts refr to Btz & IMIDs*

Despite the benefit observed with novel agents in the last years, ... other drugs are still needed for relapsed/refractory patients

* 286 pts refractory to BTZ and relapsed or refractory or ineligible to receive an IMiD

Daratumumab - Subcutaneous Formulation

PAVO – MMY1004 phase I trial

ORR: 1,800 mg groups

SAFETY PROFILE:

- Treatment related AEs: 48% all grade TEAEs.
 - Grade 3-4 hematologic AEs: 4% anemia and 8% thrombocytopenia
 - Grade 3-4 non-hematologic AEs: 4% fatigue, 4% hypertension
- **IRR**: 12%
- Injection site reactions: 20% erythema, 4% induration.

Anti-CD38 MoAb plus IMIDs in relapse or RRMM

		Study population	Results
AntiCD38	POLLUX trial DaraRD vs Rd Phase III	Relapse MM >1 prior lines Len-Sensitive	ORR: 93% vs 76% CR rate: 46% vs 20% PFS: NR vs 17.5 m HR for PFS: 0.41 (p<0.0001)
+ LEN + DEX -	Phase Ib Isatuximab + Rd	RRMM 84% refractory to IMIDs	ORR 58% (6% sCR, 23% VGPR, 29% PR) PFS 6.2 months
AntiCD38 +	Phase I Dara-Pom-Dex	>2 prior lines PI & IMID exposed	ORR = 71% (9% CR/sCR). 67% double- ref.
POM + Dex	Phase I Isa-Pom-Dex	>2 prior lines PI & IMID exposed	ORR 64% Len-ref. ORR 67% (10mg/kg 2QW)

San Miguel JF, et al. IMWG 2017; Chari A, ASH 2015 Abst 508; Richardson P et al. IMWG 2017; Martin et al. ASH 2014 (Abstract 83).

Therapeutic options for patients with relapsed/refractory multiple myeloma

Novel combinations Dara + KD (phase | MMY1001 trial)

Safety profile

- Most frequent AEs: thrombocytopenia (64%)
- 38% asthenia
- IRR 60% in the single dose group and 40% split dose.
- Adequate safety profile.

- Median duration of response was not reached (95% CI, 13.1 monthsnot estimable)
- Median PFS was not reached (95% CI, 12.9 months-not estimable;
 - 12-month PFS rate was 71% (95% Cl, 55-83)
- In lenalidomide-refractory patients, median PFS was 14.1 (95% CI, 9.4not estimable) months
 - 12-month PFS rate was 69% (95% CI, 49-82)

Lonial S, et al. ASH 2017. Poster. Abstract 1869

Daratumumab + Pomalidomide + Dex Phase 1 data

Similar results with Isatuximab-Pd

ORR 56%. Len-refractory: 58%

Richardson PG et al. ASH 2017.

Moving to the frontline setting New standards of care for elderly MM patients

Fayers PM et al. Blood 2011; 118(5): 1239-47 San Miguel. N Engl J Med 2008;359:906-17 San Miguel . J Clin Oncol. 2013; 31: 448-55

Moving to the frontline setting Dara + VMP (ALCYONE phase III trial)

Stratification factors

- ISS (I vs II vs III)
- Region (EU vs other)
- Age (<75 vs ≥75 years)

Statistical analyses

- 360 PFS events: 85% power for 8-month PFS improvement
- Interim analysis: ~216 PFS events

Dara-VMP (ALCYONE phase III trial Responses and PFS

ORR D-VMP vs VMP: 91% vs 74%.

CR rates: 43% vs 24%.

• Median (range) follow-up: 16.5 (0.1-28.1) months

50% reduction in the risk of progression or death in patients receiving D-VMP

Mateos MV, et al. Presented at ASH 2017 (Abstract LBA-4). Mateos MV, et al. NEJM 2018.

Isatuximab – CyBORDex Phase I trial ORR

- Incidence of AEs with this combination is generally consistent with the known safety profiles of the individual agents.
- IARs were generally Gr 1/2 in severity and all occurred during the first infusion.

Moving to the frontline setting New standards of care for elderly MM patients

OS...13m

One randomized trial: Benefit in PFS&OS vs MPT

Fayers PM et al. Blood 2011; 118(5): 1239-47 San Miguel. N Engl J Med 2008;359:906-17 San Miguel . J Clin Oncol. 2013; 31: 448-55

MoAbs: Futures perspectives

BCMA – MMAF for RRMM (GSK2857916) – Conjugated MoAb

Phase I dose escalation trial (n=73)

- Recommended phase 2 dose: 3.4 mg/kg.
- No DLT.
- 97% PI refractory. 91% IMID-refractory
- 57% with \geq 5 prior lines of therapy

	Part 1 (n=38)	Part 2 (n=35) 3.4 mg/kg /3 wks until PD.
Efficacy data	ORR 27% (8/30) 1 sCR, 3 VGPR, 4 PR.	ORR 60% (21/35) 1 sCR, 2 CR, 15 VGPR, 3 PR
		ORR in Dara-treated: 43%
Safety data (all grade AEs)	63% corneal events (mostly Thrombocytopenia: 57% Anemia 29%	grade 1-2)

Bispecific Antibodies

Bispecific antibodies - Different platforms

May overcome the limitations of an immunosuppresivetumor microenvironment by linking CTLs with the tumor cell.

Bispecific antibodies - Different platforms

16TH INTERNATIONAL Myeloma Workshop

NEW DELHI, INDIA • MARCH 1-4, 2017

BCMA Bispecific Antibodies in Myeloma

- BCMA (B-cell maturation antigen, CD269) plasma cell antigen
- IgG like bispecific antibody
 - anti-BCMAxCD3 (Pfizer)¹
 - Ab-957 (Genmab DuoBody/Janssen)²
 - EM901 (EngMab/Celgene)³
 - Bi-Fab⁴
- Non-IgG like BiTE
 - BI 836909 (AMG420, Amgen)⁵
- 1. Panowski SH et al. Blood. 2016. 128:383.
- 2. Pillarisetti K et al. Blood. 2016. 128:2116.

Phase I clinical trials ongoing No data yet available

- 3. Moreno L et al. Blood. 2016. 128:2096.
- 4. Ramadoss NS et al. J Am Chem Soc. 2015. 137:5288-5291.
- 5. Hipp S et al. Leukemia. 2017. 1-9.

Four major targets for cancer immunotherapy

Direct targeting of surface tumor antigens

Monoclonal antibodies

Boosting immune effectors:

IMMUNOTHERAPY

PASSIVE

Adoptive cell therapy

Activating tumor specific immunity:

Vaccins

ACTIVE MMUNOTHERAPY

Overcoming inhibitory immune supression:

Immunomodulators: IMIDs, Checkpoint inh

Adoptive Cell Therapy – Genetically-modified T cell therapy

TCR engineered T cells	CAR T cells
HLA - restricted.	Antigen recognition is independent of MHC molecule.
Potential recognition of intracellular antigens	Only extracellular proteins can be recognized (like MoAb)
TCR-mediated activation.	Possibility to insert other genes

NY-ESO-1-specific TCR-engineered T cells in MM

- N= 20
- 25% prior ASCT
- 60% CA (35% HR)

TCR-T cells were detected from day 7 - 180

Median PFS: 19.1 m (8.5 – NR). PD in 25%: loss of TCR-cells or neg-clone 70% nCR or better

Rapoport AR, et al. Nature Medicine 2015

NY-ESO-1-specific TCR-engineered T cells in MM

- N= 20
- 25% prior ASCT
- 60% CA (35% HR)

TCR-T cells were detected from day 7 - 180

Median PFS: 19.1 m (8.5 – NR). PD in 25%: loss of TCR-cells or neg-clone 70% nCR or better

Rapoport AR, et al. Nature Medicine 2015

BCMA CAR-T cells in MM

B-cell Maturation Antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for MM

	Anti-BCMA CAR (1) NCT02215967	Bb2121 (2) NCT02658929	LCAR-B38M (3) NCT03090659	CART-BCMA (4) NCT02546167
Group/Company	NIH	Bluebird/Celgene/ NCI	Nanjing Legend Biotech	Novartis/UPenn
Binder/ costimulatory	Murine/CD3 & CD28	Murine/CD3 & 41- BB	Murine/CD3 & 41- BB	Fully human/CD3 & 41-BB
Transfection	Gamma-retroviral	Lentiviral	Lentiviral	Lentiviral
BCMA expression required?	Yes	Yes	Yes	Νο
Median prior lines of therapy	7	5 (1 – 16)	3	7 (3 – 11)
Reported Efficacy	16 patients at 9x106/kg dose level. ORR 14/16 (81%) 11/14 (79%) MRD- Median EFS: 31 w	21 patients (18 evaluable) 89% ≥VGPR (56% sCR)	35 patients: 19 CRs 9 VGPR 2PRs	3 cohorts 21 pts (9/5/7) #1: 67% (1sCR,1VGPR) #2: (40%) 1 PR, 1 MR both PD #3: (83%) 1CR, 3PR, 1MR
Safety Data	Substantial but reversible	1 death, cardiopulmonary arrest (unrelated) CRS gr1-2: 71%	Transient CRS No neurotoxicity	CRS: 17 pts (gr3: 6) Neurotox: 3 (2 gr 4) 1 death – PD candidaemia

1. Ali S et al, Blood 2016 2. Yi Lin EHA 2017 3. Aili He EHA 2017 4. Cohen A, et al. ASH 2017. Abs#505

BCMA-CAR T cells in MM – Phase I data – NIH

Key inclusion criteria:

- ≥ 3 prior lines of therapy
- Clear, uniform expression of BCMA (flow/IHQ)

N=26 patients // 16 on the highest dose level.

Patients characteristics:

- Median number of prior lines: 10
- 6/16 patients (38%) with HR CA, 5/16 (31%) patients with del(17p)
- 8/16 patients (50%) refractory to last treatment regimen
- Last 14 patients were required to have low disease burden (< 30% PC in BM)

BCMA-CAR T cells in MM – Phase I NIH – Efficacy

ORR: 14/16 (81%) at 9x106/kg dose level

11/14 (79%) evaluable patients at 9x10⁶/kg achieved MRD negative status

CRS minimal at lower doses but substantial at 9x10⁶/kg

- 6 patients grade 3-4 CRS
- 10 patients grade 1-2 CRS

- 5 pts (31%) received Tocilizumab
- 19% received steroids.

Ali et al, ASH 2015. LBA 1.

BCMA-CAR T cells – Phase 1 bb2121

Expansion Cohort Initiated in August 2017

• 12 additional patients have been collected and dosed in the Expansion Cohort as of 02 Nov 2017

N=50 patients

Key inclusion:

- RRMM with ≥ 3 prior lines of therapy (including PI and IMiD), or double refractory
- \geq 50% BCMA expression

Berdeja et al. ASH 2017, abs #740

BCMA-CAR T cells – Phase 1 bb2121 - Efficacy

- N=21 patients (18 evaluable)
- Median number of prior lines: 7
- 29% penta-refractory

Dose Escalation: Cohorts ≥150 × 10⁶ CAR+ T Cells (N=18)

Median duration of follow up 40 weeks (min, max: 6.6, 69.1)

Efficacy Parameter	Statistic	Result
Time (months) to First Response	Median (min, max)	1.02 (0.5, 3.0)
Time (months) to Best Response	Median (min, max)	3.74 (0.5, 13.7)
Time (months) to Complete Response	Median (min, max)	3.84 (0.5, 13.7)
Duration of Response	Median (min, max)	NR
Progression free survival	Median (min, max)	NR
Progression free survival rate @ 6 mos	%	81%
Progression free survival rate @ 9 mos	%	71%

Objective Response Rate Subjects Treated in Escalation – Cohorts ≥150 × 10⁶

Note: Objective Response defined as attaining Stringent Complete Response, Complete Response, Very Good Partial Response, or Partial Response. Including unconfirmed responses.

- ORR 89% // ORR 100% with 150 x 10⁶ CAR-T cell infusion
- CRS: 71% (gr 1-2), 2 pts grade 3. No DLTs, No grade 3 toxicity.

Berdeja et al. ASH 2017, abs #740

BCMA-CAR T cells – Phase 1 bb2121 – Safety

Parameter	Statistic	Dosed Patients (N = 21)	
Patients with a CRS event	n (%)	15 (71)	
Time (days) to onset of first CRS	Median (min, max)	2 (1,19)	
Duration (days) of CRS	Median (min, max)	7 (1, 11)	
Time (days) to onset of grade ≥3 CRS	Median (min, max)	5 (4, 6)	
Duration (days) of grade ≥3 CRS	Median (min, max)	2 (2, 2)	

Median (Q1, Q3) Over Time by CRS Grade Subjects Treated in Escalation

- CRS: 71% (gr 1-2), 2 pts grade 3.
- No DLTs.
- No grade 3 toxicity.
- 4 patientes received Tocilizumab

BCMA-CAR T cells in MM Upenn/Novartis – Phase I data

* Patients may receive therapy during manufacturing to maintain disease control ** After first 28 days, follow-up is q4 wks up to 6 mos., then q3 mos. up to 2 years *** Pre-tx = pre-treatment, 3 to 7 days before CAR T cell infusion

Key inclusion: ≥ 3 prior lines, RRMM or doble refractory disease

Cohen et al. ASH 2017 Abstract 505

BCMA-CAR T cells in MM Upenn/Novartis – Phase I data

33 enrolled, 28 eligible (4 awaiting infusion, 3 never treated due to rapid PD)

21 treated patients

Median number of prior lines: 7 (3 – 11)

- 100% IMID and PI refractory
- 67% refractory to Dara.
- 95% high-risk cytogenetics (67% del17p or TP53 mutation)

Ν	9	5	7
Efficacy	ORR 67%	ORR: 40%	ORR 83%
	1sCR, 2 VGPR, 1 PR, 2MR	1 PR, 1 MR	Only 1 month FUP
	1 ongoing sCR at 21m	2 PD: 4 and 2 months	1 CR, 3 PR, 1 MR
Safety	CRS: 8 pts (3 grade 3/4)	CRS: 9 pts (3 grade 3)
	Neurotox: 2 pts (2 gr 4)	Neurotox:	1 patient

BCMA CAR-T Legenf Biotech – Phase I - Design

Lentiviral vector based + 4-1BB co-stimulatory domain

BCMA catching domain target two different epitope simultaneously

Key inclusion: resistant to > 3 prior lines, BCMA expression in >10% clonal PCs

N=35 patients

BCMA CAR-T Legenf Biotech – Phase I – Efficacy & Safety

Time since LCAR-B38M CAR-T infusion (Months)

CRS was mild.

- Only 5.7% AEs grade 3 or higher.
 - No neurotoxicity

Aili He et al. EHA 2017

BCMA CAR-T Memorial Sloan Ketering – Ph I – MCARH171

EGFRt	P2A	αBCMA scFv(171)	CD8a TM	4-1BB	CD3Ç
-------	-----	-----------------	---------	-------	------

Efficacy: not yet mature Toxicity: CRS grade 1=2; grade 2=1.

T-cells + anti-BCMA scFv + anti-CD19 scFv + cytopl. portion of OX40 + CD28 + Cd3z

Fludarabine 30mg/m2 x 3days Cyclophosphamide 300mg/m2 x 3d

CART-19 (1x10⁷ kg) d0 + CART-BCMA (40% d1 and 60% d2)

8 patients (2 allo for BCMA-CAR T due to previous autologus BCMA-CART treatment)

Safety:

100% CRS. No neurotoxicity. No TRM.

Efficacy (5 pts with FUP > 1m): ORR: 80% (1sCR, 1 VGPR, 2 PR)

Pt.i	Age.Sex	NO.	BCMA%	CART-BCMA T	Peak CART	CRS	Response
		Prior	on	cells infused	expansion in	stage.1	
	/Isotype	lines.	myeloma		blood: gPCR.		(duration,
			cells.1	(per kg)#.			
					(cells/ml).		wks).1
01.5	M64.	4.5	91.5.	8.2×107.5	1.92×105.	2.5	VGPR (20+).
	¦l <u>g</u> G ×						
02.1	M43.	3.1	54.2.1	4.5×107.1	1.88×10 ⁵ .1	2.1	SCR (7+) .1
	/lgG K						
03.4	M57.	2.1	81.6.	3×107.5	1.49×10°.	2.1	PR (7+)
	1-C						
	/ ISC *						
04.1	F 60.1	7.1	55.7.1	6.8×10/.1	7.22 × 10°.1	2.1	SD (7+) .1
	h-0 v						
0.5	/ieg win		04.6	4 75 × 107	E 71 V 105		DD (4.)
05.4	M58.	5.1	94.6.	4.75 × 101.5	5.71×10-3	Z.1	PK (4+)
	/ІлА к						
00	7.80 mm	4	60.7	2 E X 107	2.25 X 105	4	a NE
06.1	F47.	4.1	69.7.1	2.5 × 10	2.25 × 101	1.1	NE.1
	/leG λ.						
07	MCO	2	96.9	2.5 X 107 .	1.53×10°.	1	NE.
07.5	1000.1	2.1	50.5	2.5** 20	1.55**10	1.1	INC.1
	/lgG λ						
08	MED	3.	80.8 .	6.2×107	3.05×10°.	3.	NF.
00.1	W 00.1	2.1	00.0.1			2.1	106.1
	/leD λ .						
	1 V V V						1

#: Before infusion CART-BCMA T cells, all patients had already received CD19 specific CART cells (1×10 7×g2 ...

NE: No Evaluation.

CD19-CAR T cells in MM – First patient treated

Days after ASCT

Stadtmauer E, et al. NEJM 2015

CD19-CAR T cells in MM

Safety concerns regarding CAR T cell therapy

CRS 40-100% (severe ≈ 20-30%)

HLH/MAS

Off target effects (B-cell aplasia)

> Neurologic toxicities (CAR-T cell related encephalopathy Sd – CRES-)

GVHD

Tumor lysis syndrome

Four major targets for cancer immunotherapy

Direct targeting of surface tumor antigens

Monoclonal antibodies

Boosting immune effectors:

Adoptive cell therapy

PASSIVE

Activating tumor specific immunity:

Vaccins

ACTIVE MMUNOTHERAPY

Overcoming inhibitory immune supression:

Immunomodulators: IMIDs, Checkpoint inh

Dendritic cell vaccines in Multiple Myeloma

- Vaccination combining different antigen formats and adjuvants has been investigated in MM (Rosenblatt et al., 2013),
- but active vaccine strategies are hampered by the insufficient numbers of induced T cells, their poor homing to tumor sites, and the immunosuppressive tumor microenvironment.
- Two separate vaccinations approaches: peptide-based (NY-ESO-1, MAGE-AE, WT-1, XBP-1) and dendritic cell fused vaccines (
 broad spectrum of MM antiges are presented in the context of dendritic cell mediated costimulation).

- Phase I: RRMM. n=16 patients. Median of prior lines: 4. Well tolerated.
- ORR: 11/16: *Stable disease*. Several patients with SD lasting for 12 to 41 months.
- Phase II trial in the context of ASCT: CR/VGPR rate 78% early after ASCT. 24% of patients that improve responses.

Four major targets for cancer immunotherapy

Direct targeting of surface tumor antigens

Monoclonal antibodies

Boosting immune effectors:

Adoptive cell therapy

PASSIVE

ACTIVE MMUNOTHERAPY

Activating tumor specific immunity:

Vaccins

Overcoming inhibitory immune supression:

Immunomodulators: IMIDs, Checkpoint inh

Immune Checkpoints

PD-1/ PD-L1: Programmed Death Receptor (*releasing the brakes*) Pembrolizumab treatment in RRMM – Phase I data

	KEYNOTE-023 (PhI): PEMBRO-LEN-DEX ¹	Ph I/II: PEMBRO – POMA –DEX ²
Study design	PEMBRO 200mg/2QW LEN 25mg 1-21 DEX 40mg weekly	PEMBRO 200mg/2QW POMA 4mg 1-21 DEX 40mg weekly
Patient population	 > 2 prior lines - PI & IMID exposure 	 >2 prior lines RRMM PI & IMID exposure
Refractory status	75.8% Len-refractory 66.1% double/triple/cuadruple refractory	89% Len-refractory 82% Bort-refractory 73% double-refractory
ORR	Global (n= 50): 44% Len-refr (n=37): 35.1% Median PFS all 7.2 m / Len-R: 6.3m Median OS: all NR vs 26.3m in Len-R	Total (n=48): ORR: 60% Double refractory (n=35): 68% Median PFS 17.4m
Safety	AEs consistent with individual drug safety profiles for approved indications IRAEs: no pneumonitis. No colitis. 65% AEs grade 3-5, 33% neutropenia	Good safety profile irAEs: 38% Pneumonitis: 14%

¹Rodriguez-Otero P et al. EHA 2017, oral presentation; ²Badros et al, Blood 2017 prepub May

Pembrolizumab results in phase III trials Keynote-185: NDMM non-TE. RD vs RD + Pembro (n=301)

ORR: PembroRD 64% vs 62% Rd

Safety: • 22% increase in gr 3-5 toxicity (72% vs 50%)

Incidence of SAEs: 54% in PemRd vs 39% in Rd

Data cutoff date: June 2, 2017

Median FUP: 6.6 months

FDA Safety communication, 31-August-2017

Pembrolizumab results in phase III trials Keynote-183: RRMM. Pom-Dex vs Pom-dex + Pembro (n=249)

ORR: PembroPomD 34% vs 40% PomDex

Safety: • 18% increase in gr 3-5 toxicity (83% vs 65%)

• Incidence of SAEs: 63% in PemRd vs 46% in Rd

Data cutoff date: June 2, 2017

Median FUP: 8.1 months

FDA Safety communication, 31-August-2017

Summary

- Monoclonal antibodies are already a reality in the treatment of MM patients both at relapse and in the frontline setting. Still, there are some points that need further clarification,
 - Is it possible to retreat
 - Is there cross-resistance between antiCD38 MoAb
 - Mechanisms of resistance to MoAb
- Further development in the field of monoclonal antibodies (Bispecific, cojugates...) hold promise for relapse and refractory patients.
- Adoptive cell therapy has shown outstanding results in early phase trials but follow-up is still short and relapses continue to be an issue.
- Despite initial encouraging results with checkpoint inhibitors in MM, recent results showing an increased risk of early deaths among patients receiving PD-1 inhibitors have paused the development of these drugs in the field of MM, and now its use in this disease remains controversial.

Thank you for your attention

