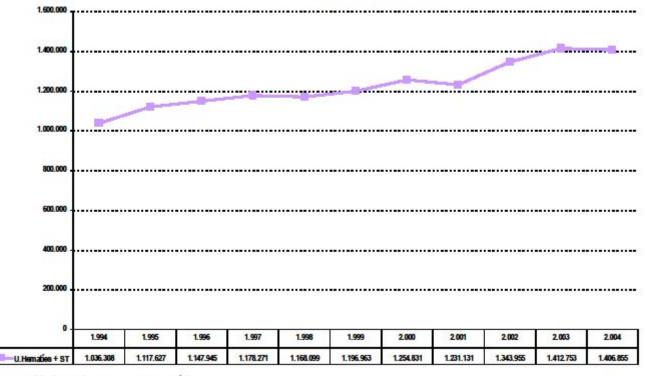
Association between RBC transfusions and NHL: a meta-analysis of observational studies

Joan Cid, MD, PhD

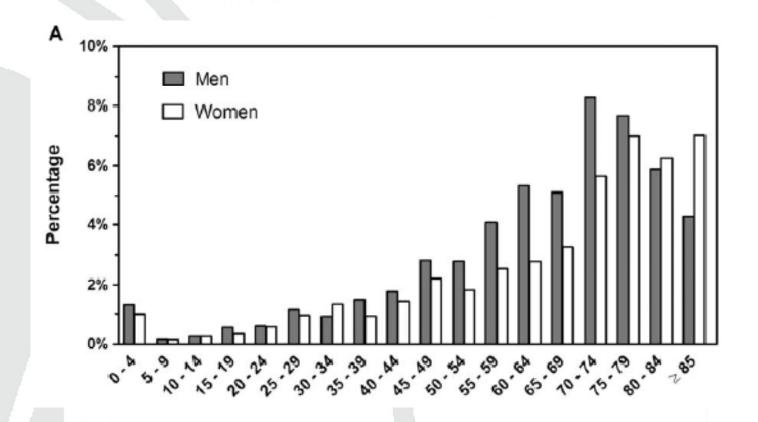
Hemotherapy and Hemostasis Department Hospital Clínic, IDIBAPS, UB Barcelona (SPAIN)

jcid@clinic.ub.es

Introduction


- The incidence of NHL is increasing
- Unexplained reasons
- Transfusion is increasing
- Meta-analysis of observational studies

Introduction


TRANSFUSION HEMATÍES Y SANGRE TOTAL 1994-2004 TOTAL NACIONAL

Fuente: Ministerio de Sanidad y Consumo. D.G. Salud Pública Plan Nacional de Hemoterapia

Introduction

Introduction Observational studies

• Case-control studies = Retrospective

• Cohort studies = Prospective

Methods Literature search

- PubMed/MEDLINE
 - Through December 2009
 - "non-Hodgkin lymphoma" AND "blood transfusion"
 - Full articles
- Cochrane database

Methods Inclusion criteria

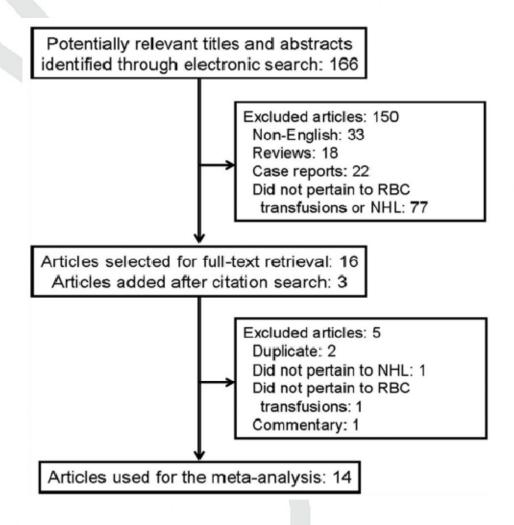
- English language
- Epidemiologic observational studies
 - Case-control
 - Cohort
- Reproted an association between RBC transfusion and NHL

Methods Exclusion criteria

- Hodgkin lymphoma
- Multiple myeloma
- Autologous RBC transfusions
- Only abstract
- Old publications of the same study

Methods Data extraction

- Case-control studies
 - Source and definition of cases and controls
 - Years of inclusion
 - RR (95% CI)
 - Variables used for adjustment
- Cohort studies
 - Source of cohort
 - Years of follow-up
 - Source of the expected incidence of NHL
 - RR (95% CI)
 - Variables used for adjustment
- Contact with authors asking missing information
- Meta-analysis of Observational Studies (MOS) group



Methods Data synthesis and analysis

- RR (95% CI)
- Fixed-effects model and random-effects model
- Subset analysis
 - Sex
 - Lymphoma subtype
 - Year of transfusion
- Heterogeinity
 - Q-test statistic
 - Quantity I²

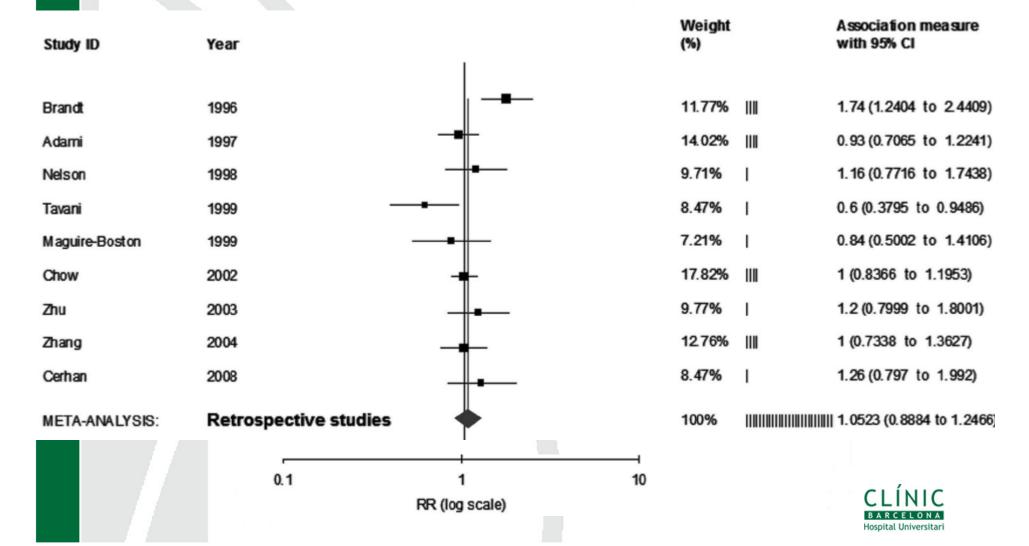
Results Search results

Results Case-control studies

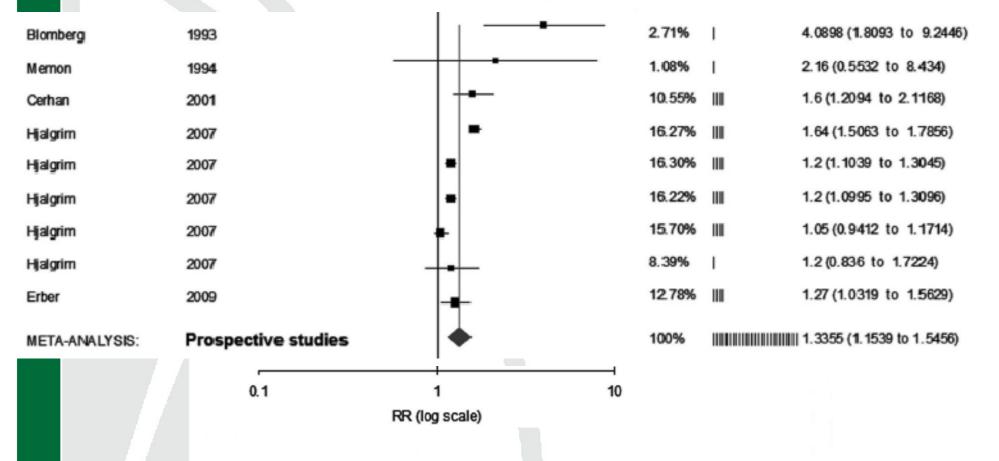
Author	Year	Cases	Controls	
Brandt	1996	280	1827	
Adami	1997	361	705	
Nelson	1998	378	378	
Maguire-Boston	1999	37	174	
Tavani	1999	385	1297	
Chow	2002	1591	2515	
Zhu	2003	1511	1910	
Zhang	2004	600	712	
Cerhan	2008	759	589	

Results Cohort studies

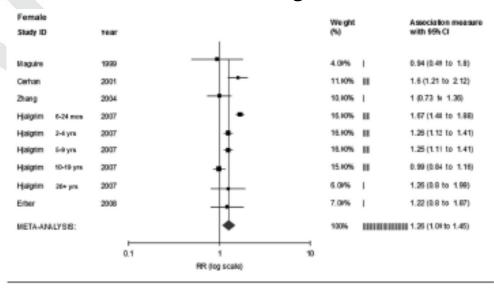
Author	Year	Median follow-up	Total cohort	Cases observed
Blomberg	1993	10 y	8,249	7
Memon	1994	25 y	340,227	4
Cerhan	2001	12 y	418,342	40
Hjalgrim	2007	Varied	5,652,918	2,853
Erber	2009	10 y	NR	939


Results Quality assessment

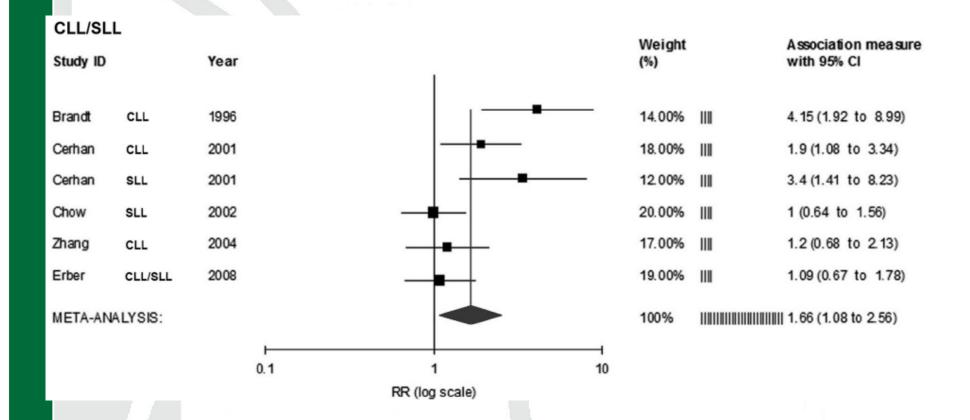
Author	Year	Selection	Comparability	Outcome	Exposure	Total
Cohort studies						
Blomberg ¹⁴	1993	4	1	2	_	7
Memon ¹⁸	1994	4	0	2	_	6
Cerhan ¹⁵	2001	4	2	2	_	8
Hjalgrim ¹⁷	2007	4	2	3	_	9
Erber ¹⁶	2009	4	2	3	_	9
Average		4	1.4	2.4	_	7.8
Case-control						
studies						
Brandt ⁶	1996	3	2	_	2	7
Adami ⁵	1997	4	2	_	3	9
Nelson ¹⁰	1998	4	2	_	2	8
Maguire-						
Boston ⁹	1999	3	2	_	3	8
Tavani ¹¹	1999	3	2	_	2	7
Chow ⁸	2002	4	2	_	2	8
Zhu ¹³	2003	3	2	_	2	7
Zhang ¹²	2004	4	2	_	2	8
Cerhan ⁷	2008	3	2	_	3	8
Average		3.4	2	_	2.3	7.7



Results Case-control studies. Outcome


Results Cohort studies. Outcome

Results Subset analysis. Sex



Male							Weight		Association measure
Study ID		Year					(9)		with 95% CI
Maguire		1999		•	TI .		7.04%	1	0.73 (0.45 to 1.16)
Zhu		2004		-	+		8.04%	I	1.2 (0.8 to 1.8)
Halgrim	6-24 mos	2007					17.40%	III	1.62 (1.44 to 1.82)
Halgrim	2-4 yrs	2007			+		17.40%	Ш	1.14 (1.01 to 1.29)
Halgrim	5-9 yrs	2007			+		16.00%	III	1.14 (1 b 1.3)
Hugim	10-10 yts	2007		-	-		14.40%	III.	1.11 (0.9 to 1.37)
Halgrim	20= yrs	2007		-	+		11.40%	III	1.16 (0.8) to 1.56)
Erber		2008			↓		11.40%	III	1.3 (0.99 to 1.71)
META-ANA	LYSIS:				+		100%		1.19 (1.03 to 1.38)
			0.1	_		⊣ 10			
			4.1	POT (100		-			

Results Subset analysis. Lymphoma subtype

Results Subset analysis. Others

Subset	Statistical association			
Year of transfusion (before or after 1992)	Yes			
Transfusion latency	Highly variable No formal analysis			
Number and type of transfusions	Highly variable No formal analysis			
Reasons for transfusion	Highly variable No formal analysis			

Discussion Etiology of NHL

- Autoimmune diseases
- Chronic infections
- Congenital and acquired immunodeficiencies
- Diabetes mellitus
- Pesticides
- In general, immune dysregulation

Blood Reviews (2007) 21, 327-348

www.elsevierhealth.com/journals/blre

REVIEW

Transfusion-related immunomodulation (TRIM): An update

Eleftherios C. Vamvakas a, Morris A. Blajchman b,*

^a Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Canada ^b Department of Pathology and Molecular Medicine, McMaster University Medical School, and

Canadian Blood Services, Hamilton, Ontario, Canada

Discussion Statistical association

- Authors found a statistical association between RBC transfusion and development of NHL
 - Case-control studies did not
 - Cohort studies did
 - Small sample size, confounding variables, recall bias
- No association with sex
- High association with CLL/SLL→ further attention
- No association with year of transfusion

Discussion Limitations

- Age of RBCs was not analyzed
- Quality of published studies
 - Self-reporting questionnaires
 - Platelet/plasma transfusion
 - Latency and reasons for transfusion
- Confounding variables
 - HIV
 - Autoimmune diseases

