G9a METHYLTRANSFERASE

FROM TRANSGENERATIONAL EPIGENETIC INHERITANCE TO THE DISCOVERY OF NEW G9a INHIBITORS FOR THE TREATMENT OF ALZHEIMER'S DISEASE.

FACULTY OF PHARMACY AND FOOD SCIENCES

UNIVERSITAT DE BARCELONA

AINA BELLVER SANCHIS

JUNE 9th, 2021

Neurociències AT de BARCELONA

ALZHEIMER'S DISEASE

ALZHEIMER'S DISEASE

The aetiology of Alzheimer's disease is multifactorial.

Drug	Donepezil	Rivastigmine	Galantamine	Memantine	Aducanumab
	(1996)	(2000)	(2001)	(2003)	(2021)
Primary mechanism	AchE inh	AchE inh	AchE inh	NMDA antagonist	Monoclonal antibody

EPIGENETICS IN ALZHEIMER'S DISEASE

Epigenetic Alterations in Alzheimer's Disease

Jose V. Sanchez-Mut and Johannes Gräff*

Epigenetic mechanisms in Alzheimer's disease: Implications for pathogenesis and therapy

Jun Wang^a, Jin-Tai Yu^{a,b,c,**}, Meng-Shan Tan^b, Teng Jiang^c, Lan Tan^{a,b,c,*}

Role of Genes and Environments for Explaining Alzheimer Disease

Margaret Gatz, PhD; Chandra A. Reynolds, PhD; Laura Fratiglioni, MD, PhD; Boo Johansson, PhD; James A. Mortimer, PhD; Stig Berg, PhD; Amy Fiske, PhD; Nancy L. Pedersen, PhD

EPIGENETIC MECHANISMS

EPIGENETIC MECHANISMS

G9a METHYLTRANSFERASE

Protein Data Bank PDB: 208J

H3K9me and H3K9me2 are repressive marks.

Lysine methyltransferase.

Its inhibition restores the neuropathological hallmarks of AD.

2019

Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease

Yan Zheng,^{1,2,*} Aiyi Liu,^{1,3,*} Zi-Jun Wang,^{1,4,*} Qing Cao,¹ Wei Wang,¹ Lin Lin,¹ Kaijie Ma,^{1,4} Freddy Zhang,¹ Jing Wei,^{1,4} Emmanuel Matas,¹ Jia Cheng,¹ Guo-Jun Chen,³ Xiaomin Wang² and Zhen Yan^{1,4}

2019

Epigenetics and memory: Emerging role of histone lysine methyltransferase G9a/GLP complex as bidirectional regulator of synaptic plasticity

Karen Ka Lam Pang^{a,b}, Mahima Sharma^{a,b,c}, Sreedharan Sajikumar^{a,b,*}

Epigenetic regulation by G9a/GLP complex ameliorates amyloidbeta 1-42 induced deficits in long-term plasticity and synaptic tagging/capture in hippocampal pyramidal neurons

Mahima Sharma,^{1,2} Tobias Dierkes^{1,3,4} and Sreedharan Sajikumar^{1,2} Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model

Christian Griñán-Ferré¹, Laura Marsal-García¹, Aina Bellver-Sanchis¹, Shukkoor Muhammed Kondengaden², Ravi Chakra Turga³, Santiago Vázquez⁴, Mercè Pallàs¹

2019 – First study in vivo in AD transgenic mice model

www.aging-us.com

EPIGENETICS IN 5XFAD

Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β -Amyloid plaques in an early-onset Alzheimer's disease mouse model

Christian Griñán-Ferré¹, Laura Marsal-García¹, Aina Bellver-Sanchis¹, Shukkoor Muhammed Kondengaden², Ravi Chakra Turga³, Santiago Vázquez⁴, Mercè Pallàs¹

Oxidative stress

Wt Control 5XFAD Control 5XFAD UNC0642 (5mg/Kg)

Better cognitive performance

Epigenetic modifications

Values represented are mean \pm Standard error of the mean (SEM); (n = 24 (SAMP8 Control = 12, SAMP8 UNC0642 (5mg/Kg) n = 12)). *p<0.05; **p<0.001; ****p<0.001; ****p<0.001.

www.aging-us.com

Pharmacological inhibition of G9a/GLP restores cognition and reduces

oxidative stress, neuroinflammation and β-Amyloid plaques in an

Christian Griñán-Ferré¹, Laura Marsal-García¹, Aina Bellver-Sanchis¹, Shukkoor Muhammed

AGING 2019, Vol. 11, Advance

Research Paper

EPIGENETICS IN 5XFAD

early-onset Alzheimer's disease mouse model

Kondengaden², Ravi Chakra Turga³, Santiago Vázquez⁴, Mercè Pallàs¹

Inflammation

Better cognitive performance

Amyloid plaques

MISSING HERITABILITY

Most disease heritability remains unaccounted

Epigenetic differences arise during the lifetime of monozygotic twins

Mario F. Fraga*, Esteban Ballestar*, Maria F. Paz*, Santiago Ropero*, Fernando Setien*, Maria L. Ballestar[†], Damia Heine-Suñer[†], Juan C. Cigudosa⁵, Miguel Urioste¹, Javier Benitez¹, Manuel Boix-Chornet[†], Abel Sanchez-Aguilera[†], Charlotte Ling¹, Emma Carlsson¹, Pernille Poulsen**, Allan Vaag**, Zarko Stephan^{††}, Tim D. Spector^{††}, Yue-Zhong Wu¹¹, Christoph Plass¹¹, and Manel Esteller^{*55}

MDPI

Review

The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease

Aina Bellver-Sanchis¹, Mercè Pallàs¹ and Christian Griñán-Ferré^{1,*}

Does **set-25** play an important role in **epigenetic inheritance** in cognitive impairment after environmental harmful insults?

EXPERIMENTAL PARADIGM

Imprinting: a phase-specific long-term memory

CONCLUSIONS

- The potential reversibility of epigenetics allows **predicting future disease risk** and **validating new therapeutic targets**, as epigenetic intervention can modify the hippocampal transcriptome, potentially reversing age-related cognitive dysfunction. **Epigenetics**, therefore, is of **considerable translational importance** in the field of **neuroprotection**.
- UNC0642 prevented A**β** plaques accumulation, increased **synaptic plasticity** and neuronal markers that are characteristically loss in AD. Moreover, UNC0642 was able to reduce **OS** and **neuroinflammation**.

Dra Mercè Pallàs Dr Christian Griñán Ferré Dra Anna M. Canudas

Gràcies NK YOU

Foteini Vasilopoulou Vanessa Izquierdo Júlia Companys Júlia Jané

TAKE HOME MESSAGE

Our work reports a new finding that pharmacological inhibition of **G9a** might be a promising target for AD therapy, promoting neuroprotection through reduction of its repressive chromatin mark

Institut de Neurociències UNIVERSITAT DE BARCELONA

